使用患者报告结果测量的潜在分类模型将慢性盆腔疼痛患者分类为生物心理社会功能障碍水平。

Q2 Medicine
Pain Research and Treatment Pub Date : 2015-01-01 Epub Date: 2015-08-18 DOI:10.1155/2015/940675
Bradford W Fenton, Scott F Grey, Krystel Tossone, Michele McCarroll, Vivian E Von Gruenigen
{"title":"使用患者报告结果测量的潜在分类模型将慢性盆腔疼痛患者分类为生物心理社会功能障碍水平。","authors":"Bradford W Fenton,&nbsp;Scott F Grey,&nbsp;Krystel Tossone,&nbsp;Michele McCarroll,&nbsp;Vivian E Von Gruenigen","doi":"10.1155/2015/940675","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic pelvic pain affects multiple aspects of a patient's physical, social, and emotional functioning. Latent class analysis (LCA) of Patient Reported Outcome Measures Information System (PROMIS) domains has the potential to improve clinical insight into these patients' pain. Based on the 11 PROMIS domains applied to n=613 patients referred for evaluation in a chronic pelvic pain specialty center, exploratory factor analysis (EFA) was used to identify unidimensional superdomains. Latent profile analysis (LPA) was performed to identify the number of homogeneous classes present and to further define the pain classification system. The EFA combined the 11 PROMIS domains into four unidimensional superdomains of biopsychosocial dysfunction: Pain, Negative Affect, Fatigue, and Social Function. Based on multiple fit criteria, a latent class model revealed four distinct classes of CPP: No dysfunction (3.2%); Low Dysfunction (17.8%); Moderate Dysfunction (53.2%); and High Dysfunction (25.8%). This study is the first description of a novel approach to the complex disease process such as chronic pelvic pain and was validated by demographic, medical, and psychosocial variables. In addition to an essentially normal class, three classes of increasing biopsychosocial dysfunction were identified. The LCA approach has the potential for application to other complex multifactorial disease processes. </p>","PeriodicalId":19786,"journal":{"name":"Pain Research and Treatment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/940675","citationCount":"14","resultStr":"{\"title\":\"Classifying Patients with Chronic Pelvic Pain into Levels of Biopsychosocial Dysfunction Using Latent Class Modeling of Patient Reported Outcome Measures.\",\"authors\":\"Bradford W Fenton,&nbsp;Scott F Grey,&nbsp;Krystel Tossone,&nbsp;Michele McCarroll,&nbsp;Vivian E Von Gruenigen\",\"doi\":\"10.1155/2015/940675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic pelvic pain affects multiple aspects of a patient's physical, social, and emotional functioning. Latent class analysis (LCA) of Patient Reported Outcome Measures Information System (PROMIS) domains has the potential to improve clinical insight into these patients' pain. Based on the 11 PROMIS domains applied to n=613 patients referred for evaluation in a chronic pelvic pain specialty center, exploratory factor analysis (EFA) was used to identify unidimensional superdomains. Latent profile analysis (LPA) was performed to identify the number of homogeneous classes present and to further define the pain classification system. The EFA combined the 11 PROMIS domains into four unidimensional superdomains of biopsychosocial dysfunction: Pain, Negative Affect, Fatigue, and Social Function. Based on multiple fit criteria, a latent class model revealed four distinct classes of CPP: No dysfunction (3.2%); Low Dysfunction (17.8%); Moderate Dysfunction (53.2%); and High Dysfunction (25.8%). This study is the first description of a novel approach to the complex disease process such as chronic pelvic pain and was validated by demographic, medical, and psychosocial variables. In addition to an essentially normal class, three classes of increasing biopsychosocial dysfunction were identified. The LCA approach has the potential for application to other complex multifactorial disease processes. </p>\",\"PeriodicalId\":19786,\"journal\":{\"name\":\"Pain Research and Treatment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2015/940675\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pain Research and Treatment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/940675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/8/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pain Research and Treatment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/940675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/8/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 14

摘要

慢性盆腔疼痛影响患者身体、社交和情绪功能的多个方面。患者报告结果测量信息系统(PROMIS)域的潜在分类分析(LCA)有可能改善对这些患者疼痛的临床洞察。基于在某慢性盆腔疼痛专科中心接受评估的n=613例患者的11个PROMIS域,采用探索性因素分析(EFA)来识别单维超域。进行潜在剖面分析(LPA)以确定存在的同质类的数量,并进一步定义疼痛分类系统。EFA将11个PROMIS域合并为生物心理社会功能障碍的4个单维超域:疼痛、负面影响、疲劳和社会功能。基于多个拟合标准,潜类模型揭示了CPP的四个不同类别:无功能障碍(3.2%);低功能障碍(17.8%);中度功能障碍(53.2%);高功能障碍(25.8%)。这项研究首次描述了一种治疗慢性盆腔疼痛等复杂疾病过程的新方法,并得到了人口统计学、医学和社会心理变量的验证。除了基本正常的一类外,还确定了三种不断增加的生物心理社会功能障碍。LCA方法有可能应用于其他复杂的多因子疾病过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Classifying Patients with Chronic Pelvic Pain into Levels of Biopsychosocial Dysfunction Using Latent Class Modeling of Patient Reported Outcome Measures.

Classifying Patients with Chronic Pelvic Pain into Levels of Biopsychosocial Dysfunction Using Latent Class Modeling of Patient Reported Outcome Measures.

Chronic pelvic pain affects multiple aspects of a patient's physical, social, and emotional functioning. Latent class analysis (LCA) of Patient Reported Outcome Measures Information System (PROMIS) domains has the potential to improve clinical insight into these patients' pain. Based on the 11 PROMIS domains applied to n=613 patients referred for evaluation in a chronic pelvic pain specialty center, exploratory factor analysis (EFA) was used to identify unidimensional superdomains. Latent profile analysis (LPA) was performed to identify the number of homogeneous classes present and to further define the pain classification system. The EFA combined the 11 PROMIS domains into four unidimensional superdomains of biopsychosocial dysfunction: Pain, Negative Affect, Fatigue, and Social Function. Based on multiple fit criteria, a latent class model revealed four distinct classes of CPP: No dysfunction (3.2%); Low Dysfunction (17.8%); Moderate Dysfunction (53.2%); and High Dysfunction (25.8%). This study is the first description of a novel approach to the complex disease process such as chronic pelvic pain and was validated by demographic, medical, and psychosocial variables. In addition to an essentially normal class, three classes of increasing biopsychosocial dysfunction were identified. The LCA approach has the potential for application to other complex multifactorial disease processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pain Research and Treatment
Pain Research and Treatment Medicine-Anesthesiology and Pain Medicine
CiteScore
3.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信