{"title":"缓慢的高电荷离子在独立的二维材料表面上的电荷交换","authors":"Richard A. Wilhelm","doi":"10.1016/j.surfrep.2022.100577","DOIUrl":null,"url":null,"abstract":"<div><p>The property of a variable charge state makes ions unique to other types of radiation a material surface can be exposed to. As a consequence of charge exchange between ions and surfaces, energy is transferred to the surface and material damage may be triggered. Furthermore, a changing charge state of the ion alters its slowing down process in solids and has important implications when back-scattered ions are to be measured for material analysis purposes. Over the last decades extensive research was devoted to the understanding of ion charge exchange with solids. Here I review recent progress in this field with special emphasize on slow ions in high charge states. This class of ions allows a detailed analysis of charge exchange in experiments, which employ also ultra-thin solid targets and therefore give experimental access to electronic processes on the femtosecond timescale. In this review I will discuss general properties of charge exchange and present typical experimental techniques. I will also discuss current developments in the modelling and simulation of ion-surface interaction. Recent findings using freestanding 2D materials are discussed as well as results from spectroscopy of emitted secondary particles. The paper concludes with a unified picture of ion charge exchange at surfaces and presents possible applications based on the understanding of the underlying physics.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The charge exchange of slow highly charged ions at surfaces unraveled with freestanding 2D materials\",\"authors\":\"Richard A. Wilhelm\",\"doi\":\"10.1016/j.surfrep.2022.100577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The property of a variable charge state makes ions unique to other types of radiation a material surface can be exposed to. As a consequence of charge exchange between ions and surfaces, energy is transferred to the surface and material damage may be triggered. Furthermore, a changing charge state of the ion alters its slowing down process in solids and has important implications when back-scattered ions are to be measured for material analysis purposes. Over the last decades extensive research was devoted to the understanding of ion charge exchange with solids. Here I review recent progress in this field with special emphasize on slow ions in high charge states. This class of ions allows a detailed analysis of charge exchange in experiments, which employ also ultra-thin solid targets and therefore give experimental access to electronic processes on the femtosecond timescale. In this review I will discuss general properties of charge exchange and present typical experimental techniques. I will also discuss current developments in the modelling and simulation of ion-surface interaction. Recent findings using freestanding 2D materials are discussed as well as results from spectroscopy of emitted secondary particles. The paper concludes with a unified picture of ion charge exchange at surfaces and presents possible applications based on the understanding of the underlying physics.</p></div>\",\"PeriodicalId\":434,\"journal\":{\"name\":\"Surface Science Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167572922000267\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572922000267","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The charge exchange of slow highly charged ions at surfaces unraveled with freestanding 2D materials
The property of a variable charge state makes ions unique to other types of radiation a material surface can be exposed to. As a consequence of charge exchange between ions and surfaces, energy is transferred to the surface and material damage may be triggered. Furthermore, a changing charge state of the ion alters its slowing down process in solids and has important implications when back-scattered ions are to be measured for material analysis purposes. Over the last decades extensive research was devoted to the understanding of ion charge exchange with solids. Here I review recent progress in this field with special emphasize on slow ions in high charge states. This class of ions allows a detailed analysis of charge exchange in experiments, which employ also ultra-thin solid targets and therefore give experimental access to electronic processes on the femtosecond timescale. In this review I will discuss general properties of charge exchange and present typical experimental techniques. I will also discuss current developments in the modelling and simulation of ion-surface interaction. Recent findings using freestanding 2D materials are discussed as well as results from spectroscopy of emitted secondary particles. The paper concludes with a unified picture of ion charge exchange at surfaces and presents possible applications based on the understanding of the underlying physics.
期刊介绍:
Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.