{"title":"代谢稳态和神经退行性变之间的相互作用:对肌萎缩侧索硬化症神经代谢性质的见解","authors":"S.T. Ngo , F.J. Steyn","doi":"10.1186/s13619-015-0019-6","DOIUrl":null,"url":null,"abstract":"<div><p>Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disease that is characterized by the selective degeneration of upper motor neurons and lower spinal motor neurons, resulting in the progressive paralysis of all voluntary muscles. Approximately 10 % of ALS cases are linked to known genetic mutations, with the remaining 90 % of cases being sporadic. While the primary pathology in ALS is the selective death of upper and lower motor neurons, numerous studies indicate that an imbalance in whole body and/or cellular metabolism influences the rate of progression of disease. This review summarizes current research surrounding the impact of impaired metabolic physiology in ALS. We extend ideas to consider prospects that lie ahead in terms of how metabolic alterations may impact the selective degeneration of neurons in ALS and how targeting of adenosine triphosphate-sensitive potassium (K<sub>ATP</sub>) channels may represent a promising approach for obtaining neuroprotection in ALS.</p></div>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"4 1","pages":"Article 4:5"},"PeriodicalIF":4.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13619-015-0019-6","citationCount":"41","resultStr":"{\"title\":\"The interplay between metabolic homeostasis and neurodegeneration: insights into the neurometabolic nature of amyotrophic lateral sclerosis\",\"authors\":\"S.T. Ngo , F.J. Steyn\",\"doi\":\"10.1186/s13619-015-0019-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disease that is characterized by the selective degeneration of upper motor neurons and lower spinal motor neurons, resulting in the progressive paralysis of all voluntary muscles. Approximately 10 % of ALS cases are linked to known genetic mutations, with the remaining 90 % of cases being sporadic. While the primary pathology in ALS is the selective death of upper and lower motor neurons, numerous studies indicate that an imbalance in whole body and/or cellular metabolism influences the rate of progression of disease. This review summarizes current research surrounding the impact of impaired metabolic physiology in ALS. We extend ideas to consider prospects that lie ahead in terms of how metabolic alterations may impact the selective degeneration of neurons in ALS and how targeting of adenosine triphosphate-sensitive potassium (K<sub>ATP</sub>) channels may represent a promising approach for obtaining neuroprotection in ALS.</p></div>\",\"PeriodicalId\":9811,\"journal\":{\"name\":\"Cell Regeneration\",\"volume\":\"4 1\",\"pages\":\"Article 4:5\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13619-015-0019-6\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2045976917300081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2045976917300081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
The interplay between metabolic homeostasis and neurodegeneration: insights into the neurometabolic nature of amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disease that is characterized by the selective degeneration of upper motor neurons and lower spinal motor neurons, resulting in the progressive paralysis of all voluntary muscles. Approximately 10 % of ALS cases are linked to known genetic mutations, with the remaining 90 % of cases being sporadic. While the primary pathology in ALS is the selective death of upper and lower motor neurons, numerous studies indicate that an imbalance in whole body and/or cellular metabolism influences the rate of progression of disease. This review summarizes current research surrounding the impact of impaired metabolic physiology in ALS. We extend ideas to consider prospects that lie ahead in terms of how metabolic alterations may impact the selective degeneration of neurons in ALS and how targeting of adenosine triphosphate-sensitive potassium (KATP) channels may represent a promising approach for obtaining neuroprotection in ALS.
Cell RegenerationBiochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍:
Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics:
◎ Embryonic stem cells
◎ Induced pluripotent stem cells
◎ Tissue-specific stem cells
◎ Tissue or organ regeneration
◎ Methodology
◎ Biomaterials and regeneration
◎ Clinical translation or application in medicine