{"title":"整合与发射神经元中的后对相关性的简单机制","authors":"David A Leen, Eric Shea-Brown","doi":"10.1186/s13408-015-0030-9","DOIUrl":null,"url":null,"abstract":"<p><p>The collective dynamics of neural populations are often characterized in terms of correlations in the spike activity of different neurons. We have developed an understanding of the circuit mechanisms that lead to correlations among cell pairs, but little is known about what determines the population firing statistics among larger groups of cells. Here, we examine this question for a simple, but ubiquitous, circuit feature: common fluctuating input arriving to spiking neurons of integrate-and-fire type. We show that this leads to strong beyond-pairwise correlations-that is, correlations that cannot be captured by maximum entropy models that extrapolate from pairwise statistics-as for earlier work with discrete threshold crossing (dichotomous Gaussian) models. Moreover, we find that the same is true for another widely used, doubly stochastic model of neural spiking, the linear-nonlinear cascade. We demonstrate the strong connection between the collective dynamics produced by integrate-and-fire and dichotomous Gaussian models, and show that the latter is a surprisingly accurate model of the former. Our conclusion is that beyond-pairwise correlations can be both broadly expected and possible to describe by simplified (and tractable) statistical models. </p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4554967/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Simple Mechanism for Beyond-Pairwise Correlations in Integrate-and-Fire Neurons.\",\"authors\":\"David A Leen, Eric Shea-Brown\",\"doi\":\"10.1186/s13408-015-0030-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The collective dynamics of neural populations are often characterized in terms of correlations in the spike activity of different neurons. We have developed an understanding of the circuit mechanisms that lead to correlations among cell pairs, but little is known about what determines the population firing statistics among larger groups of cells. Here, we examine this question for a simple, but ubiquitous, circuit feature: common fluctuating input arriving to spiking neurons of integrate-and-fire type. We show that this leads to strong beyond-pairwise correlations-that is, correlations that cannot be captured by maximum entropy models that extrapolate from pairwise statistics-as for earlier work with discrete threshold crossing (dichotomous Gaussian) models. Moreover, we find that the same is true for another widely used, doubly stochastic model of neural spiking, the linear-nonlinear cascade. We demonstrate the strong connection between the collective dynamics produced by integrate-and-fire and dichotomous Gaussian models, and show that the latter is a surprisingly accurate model of the former. Our conclusion is that beyond-pairwise correlations can be both broadly expected and possible to describe by simplified (and tractable) statistical models. </p>\",\"PeriodicalId\":54271,\"journal\":{\"name\":\"Journal of Mathematical Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4554967/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13408-015-0030-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/9/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13408-015-0030-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/9/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
A Simple Mechanism for Beyond-Pairwise Correlations in Integrate-and-Fire Neurons.
The collective dynamics of neural populations are often characterized in terms of correlations in the spike activity of different neurons. We have developed an understanding of the circuit mechanisms that lead to correlations among cell pairs, but little is known about what determines the population firing statistics among larger groups of cells. Here, we examine this question for a simple, but ubiquitous, circuit feature: common fluctuating input arriving to spiking neurons of integrate-and-fire type. We show that this leads to strong beyond-pairwise correlations-that is, correlations that cannot be captured by maximum entropy models that extrapolate from pairwise statistics-as for earlier work with discrete threshold crossing (dichotomous Gaussian) models. Moreover, we find that the same is true for another widely used, doubly stochastic model of neural spiking, the linear-nonlinear cascade. We demonstrate the strong connection between the collective dynamics produced by integrate-and-fire and dichotomous Gaussian models, and show that the latter is a surprisingly accurate model of the former. Our conclusion is that beyond-pairwise correlations can be both broadly expected and possible to describe by simplified (and tractable) statistical models.
期刊介绍:
The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions.
It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged.
Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.