{"title":"用于~ 3 μm二极管泵浦激光器的掺铒晶体有源介质","authors":"Richard Švejkar, Jan Šulc, Helena Jelínková","doi":"10.1016/j.pquantelec.2020.100276","DOIUrl":null,"url":null,"abstract":"<div><p><span>Lasers based on erbium ions using </span><sup>4</sup>I<sub>11/2</sub> → <sup>4</sup>I<sub>13/2</sub><span><span> transition can generate laser radiation in the spectral range from 2.7 μm to 3 μm. Since the strong absorption peak of water is located at 3 μm, there has been an effort to develop a suitable laser source for various medical applications, e.g. dentistry, dermatology, urology, or surgery. Laser radiation from this wavelength range can also be used in spectroscopy, as a pumping source for optical parametric </span>oscillators, or for further mid-infrared conversion.</span></p><p>This paper represents an overview of the erbium-doped active media (e.g. Er:YAG, Er:YAP, Er:GGG, Er:SrF<sub>2</sub>, Er:YLF, Er:Y<sub>2</sub>O<sub>3</sub>, Er:KYW, etc.) for laser radiation generation in the spectral range 2.7–3 μm. In the first part of this paper, the particular active media are discussed in detail. On the other hand, the experimental results summarized absorption and emission cross-section spectra together with decay times at upper (<sup>4</sup>I<sub>11/2</sub>) and lower (<sup>4</sup>I<sub>13/2</sub>) laser levels of all tested Er-doped samples at room temperature. Moreover, laser results in CW and pulsed laser regime with tunability curves, achieved in recent years, are presented, too.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100276","citationCount":"23","resultStr":"{\"title\":\"Er-doped crystalline active media for ~ 3 μm diode-pumped lasers\",\"authors\":\"Richard Švejkar, Jan Šulc, Helena Jelínková\",\"doi\":\"10.1016/j.pquantelec.2020.100276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Lasers based on erbium ions using </span><sup>4</sup>I<sub>11/2</sub> → <sup>4</sup>I<sub>13/2</sub><span><span> transition can generate laser radiation in the spectral range from 2.7 μm to 3 μm. Since the strong absorption peak of water is located at 3 μm, there has been an effort to develop a suitable laser source for various medical applications, e.g. dentistry, dermatology, urology, or surgery. Laser radiation from this wavelength range can also be used in spectroscopy, as a pumping source for optical parametric </span>oscillators, or for further mid-infrared conversion.</span></p><p>This paper represents an overview of the erbium-doped active media (e.g. Er:YAG, Er:YAP, Er:GGG, Er:SrF<sub>2</sub>, Er:YLF, Er:Y<sub>2</sub>O<sub>3</sub>, Er:KYW, etc.) for laser radiation generation in the spectral range 2.7–3 μm. In the first part of this paper, the particular active media are discussed in detail. On the other hand, the experimental results summarized absorption and emission cross-section spectra together with decay times at upper (<sup>4</sup>I<sub>11/2</sub>) and lower (<sup>4</sup>I<sub>13/2</sub>) laser levels of all tested Er-doped samples at room temperature. Moreover, laser results in CW and pulsed laser regime with tunability curves, achieved in recent years, are presented, too.</p></div>\",\"PeriodicalId\":414,\"journal\":{\"name\":\"Progress in Quantum Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100276\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Quantum Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079672720300355\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672720300355","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Er-doped crystalline active media for ~ 3 μm diode-pumped lasers
Lasers based on erbium ions using 4I11/2 → 4I13/2 transition can generate laser radiation in the spectral range from 2.7 μm to 3 μm. Since the strong absorption peak of water is located at 3 μm, there has been an effort to develop a suitable laser source for various medical applications, e.g. dentistry, dermatology, urology, or surgery. Laser radiation from this wavelength range can also be used in spectroscopy, as a pumping source for optical parametric oscillators, or for further mid-infrared conversion.
This paper represents an overview of the erbium-doped active media (e.g. Er:YAG, Er:YAP, Er:GGG, Er:SrF2, Er:YLF, Er:Y2O3, Er:KYW, etc.) for laser radiation generation in the spectral range 2.7–3 μm. In the first part of this paper, the particular active media are discussed in detail. On the other hand, the experimental results summarized absorption and emission cross-section spectra together with decay times at upper (4I11/2) and lower (4I13/2) laser levels of all tested Er-doped samples at room temperature. Moreover, laser results in CW and pulsed laser regime with tunability curves, achieved in recent years, are presented, too.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.