用固体电解质LiNbO3包覆提高LiMn2O4的高倍率性能和循环稳定性

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhi-Jia Zhang, Shu-Lei Chou, Qin-Fen Gu, Hua-Kun Liu, Hui-Jun Li*, Kiyoshi Ozawa, Jia-Zhao Wang*
{"title":"用固体电解质LiNbO3包覆提高LiMn2O4的高倍率性能和循环稳定性","authors":"Zhi-Jia Zhang,&nbsp;Shu-Lei Chou,&nbsp;Qin-Fen Gu,&nbsp;Hua-Kun Liu,&nbsp;Hui-Jun Li*,&nbsp;Kiyoshi Ozawa,&nbsp;Jia-Zhao Wang*","doi":"10.1021/am5056504","DOIUrl":null,"url":null,"abstract":"<p >To study the influence of solid-state electrolyte coating layers on the performance of cathode materials for lithium-ion batteries in combination with organic liquid electrolyte, LiNbO<sub>3</sub>-coated Li<sub>1.08</sub>Mn<sub>1.92</sub>O<sub>4</sub> cathode materials were synthesized by using a facile solid-state reaction method. The 0.06LiNbO<sub>3</sub>–0.97Li<sub>1.08</sub>Mn<sub>1.92</sub>O<sub>4</sub> cathode exhibited an initial discharge capacity of 125 mAh g<sup>–1</sup>, retaining a capacity of 119 mAh g<sup>–1</sup> at 25 °C, while at 55 °C, it exhibited an initial discharge capacity of 130 mAh g<sup>–1</sup>, retaining a capacity of 111 mAh g<sup>–1</sup>, both at a current density of 0.5 C (where 1 C is 148 mAh g<sup>–1</sup>). Very good rate capability was demonstrated, with the 0.06LiNbO<sub>3</sub>–0.97Li<sub>1.08</sub>Mn<sub>1.92</sub>O<sub>4</sub> cathode showing more than 85% capacity at the rate of 50 C compared with the capacity at 0.5 C. The 0.06LiNbO<sub>3</sub>–0.97Li<sub>1.08</sub>Mn<sub>1.92</sub>O<sub>4</sub> cathode showed a high lithium diffusion coefficient (1.6 × 10<sup>–10</sup> cm<sup>2</sup> s<sup>–1</sup> at 55 °C), and low apparent activation energy (36.9 kJ mol<sup>–1</sup>). The solid-state electrolyte coating layer is effective for preventing Mn dissolution and maintaining the high ionic conductivity between the electrode and the organic liquid electrolyte, which may improve the design and construction of next-generation large-scale lithium-ion batteries with high power and safety.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"6 24","pages":"22155–22165"},"PeriodicalIF":8.3000,"publicationDate":"2014-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/am5056504","citationCount":"71","resultStr":"{\"title\":\"Enhancing the High Rate Capability and Cycling Stability of LiMn2O4 by Coating of Solid-State Electrolyte LiNbO3\",\"authors\":\"Zhi-Jia Zhang,&nbsp;Shu-Lei Chou,&nbsp;Qin-Fen Gu,&nbsp;Hua-Kun Liu,&nbsp;Hui-Jun Li*,&nbsp;Kiyoshi Ozawa,&nbsp;Jia-Zhao Wang*\",\"doi\":\"10.1021/am5056504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >To study the influence of solid-state electrolyte coating layers on the performance of cathode materials for lithium-ion batteries in combination with organic liquid electrolyte, LiNbO<sub>3</sub>-coated Li<sub>1.08</sub>Mn<sub>1.92</sub>O<sub>4</sub> cathode materials were synthesized by using a facile solid-state reaction method. The 0.06LiNbO<sub>3</sub>–0.97Li<sub>1.08</sub>Mn<sub>1.92</sub>O<sub>4</sub> cathode exhibited an initial discharge capacity of 125 mAh g<sup>–1</sup>, retaining a capacity of 119 mAh g<sup>–1</sup> at 25 °C, while at 55 °C, it exhibited an initial discharge capacity of 130 mAh g<sup>–1</sup>, retaining a capacity of 111 mAh g<sup>–1</sup>, both at a current density of 0.5 C (where 1 C is 148 mAh g<sup>–1</sup>). Very good rate capability was demonstrated, with the 0.06LiNbO<sub>3</sub>–0.97Li<sub>1.08</sub>Mn<sub>1.92</sub>O<sub>4</sub> cathode showing more than 85% capacity at the rate of 50 C compared with the capacity at 0.5 C. The 0.06LiNbO<sub>3</sub>–0.97Li<sub>1.08</sub>Mn<sub>1.92</sub>O<sub>4</sub> cathode showed a high lithium diffusion coefficient (1.6 × 10<sup>–10</sup> cm<sup>2</sup> s<sup>–1</sup> at 55 °C), and low apparent activation energy (36.9 kJ mol<sup>–1</sup>). The solid-state electrolyte coating layer is effective for preventing Mn dissolution and maintaining the high ionic conductivity between the electrode and the organic liquid electrolyte, which may improve the design and construction of next-generation large-scale lithium-ion batteries with high power and safety.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"6 24\",\"pages\":\"22155–22165\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2014-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/am5056504\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/am5056504\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/am5056504","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 71

摘要

为了研究固态电解质包覆层与有机液体电解质结合对锂离子电池正极材料性能的影响,采用简易固相反应法制备了linbo3包覆li1.08 mn1.92 2o4正极材料。0.06 linbo3 - 0.97 li1.08 mn1.92 2o4阴极的初始放电容量为125 mAh g-1,在25°C时保持119 mAh g-1的容量,而在55°C时,其初始放电容量为130 mAh g-1,保持111 mAh g-1的容量,电流密度均为0.5 C(其中1 C为148 mAh g-1)。0.06 linbo3 - 0.97 li1.08 mn1.92 2o4阴极在50℃时的容量比0.5℃时的容量大85%。0.06 linbo3 - 0.97 li1.08 mn1.92 2o4阴极在55℃时具有较高的锂扩散系数(1.6 × 10-10 cm2 s-1)和较低的表观活化能(36.9 kJ mol-1)。该固态电解质涂层可以有效地防止锰的溶解,并保持电极与有机液体电解质之间的高离子电导率,这将有助于下一代大功率、安全的大型锂离子电池的设计和制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing the High Rate Capability and Cycling Stability of LiMn2O4 by Coating of Solid-State Electrolyte LiNbO3

Enhancing the High Rate Capability and Cycling Stability of LiMn2O4 by Coating of Solid-State Electrolyte LiNbO3

To study the influence of solid-state electrolyte coating layers on the performance of cathode materials for lithium-ion batteries in combination with organic liquid electrolyte, LiNbO3-coated Li1.08Mn1.92O4 cathode materials were synthesized by using a facile solid-state reaction method. The 0.06LiNbO3–0.97Li1.08Mn1.92O4 cathode exhibited an initial discharge capacity of 125 mAh g–1, retaining a capacity of 119 mAh g–1 at 25 °C, while at 55 °C, it exhibited an initial discharge capacity of 130 mAh g–1, retaining a capacity of 111 mAh g–1, both at a current density of 0.5 C (where 1 C is 148 mAh g–1). Very good rate capability was demonstrated, with the 0.06LiNbO3–0.97Li1.08Mn1.92O4 cathode showing more than 85% capacity at the rate of 50 C compared with the capacity at 0.5 C. The 0.06LiNbO3–0.97Li1.08Mn1.92O4 cathode showed a high lithium diffusion coefficient (1.6 × 10–10 cm2 s–1 at 55 °C), and low apparent activation energy (36.9 kJ mol–1). The solid-state electrolyte coating layer is effective for preventing Mn dissolution and maintaining the high ionic conductivity between the electrode and the organic liquid electrolyte, which may improve the design and construction of next-generation large-scale lithium-ion batteries with high power and safety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信