Savita Khatri, Pratibha Ahlawat, S P Khatkar, V B Taxak, Rajesh Kumar
{"title":"氟化β-酮羧酸铕(III)配合物的光物理、光学和激光分析。","authors":"Savita Khatri, Pratibha Ahlawat, S P Khatkar, V B Taxak, Rajesh Kumar","doi":"10.1088/2050-6120/ac98f5","DOIUrl":null,"url":null,"abstract":"<p><p>Six luminescent, bright red Eu(III) complexes with a<i>β</i>-keto-carboxylic acid as prime ligand and N-donor aromatic systems as auxillary ligand were synthesised via ecologically efficient grinding method. The distinctive red peak (<sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>2</sub>) of Eu(III) ion is exhibited in emission spectra of all complexes. The luminescent properties of complexes were analysed through decay time, color coordinates, luminescence efficiency and Judd Ofelt parameters. The value of Ω<sub>2</sub>is found to be higher than Ω<sub>4</sub>which indicated hypersensitive nature of<sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>2</sub>transition. The results established the complexes as a strong contender for red light emitting display devices. The fluorescence branching ratios, stimulated emission cross section, gain band width and optical gain showed the good lasing strength of<sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>2</sub>transition of complexes. The complexes exhibited decent thermal stability and have optical energy band gap value in semiconductor range, thus can have relevance in optoelectronic devices. Energy transfer mechanism was investigated for complexes which affirmed the efficacious transfer of energy from ligands to Eu(III) ion. The synthesised complexes were also assayed for antimicrobial and antioxidant properties. All complexes are reported to show better antioxidant behaviour than the prime ligand and also exhibited upstanding antibacterial activities.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Photophysical, optical and lasing analysis of fluorinated<i>β</i>-keto carboxylate europium(III) complexes.\",\"authors\":\"Savita Khatri, Pratibha Ahlawat, S P Khatkar, V B Taxak, Rajesh Kumar\",\"doi\":\"10.1088/2050-6120/ac98f5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Six luminescent, bright red Eu(III) complexes with a<i>β</i>-keto-carboxylic acid as prime ligand and N-donor aromatic systems as auxillary ligand were synthesised via ecologically efficient grinding method. The distinctive red peak (<sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>2</sub>) of Eu(III) ion is exhibited in emission spectra of all complexes. The luminescent properties of complexes were analysed through decay time, color coordinates, luminescence efficiency and Judd Ofelt parameters. The value of Ω<sub>2</sub>is found to be higher than Ω<sub>4</sub>which indicated hypersensitive nature of<sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>2</sub>transition. The results established the complexes as a strong contender for red light emitting display devices. The fluorescence branching ratios, stimulated emission cross section, gain band width and optical gain showed the good lasing strength of<sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>2</sub>transition of complexes. The complexes exhibited decent thermal stability and have optical energy band gap value in semiconductor range, thus can have relevance in optoelectronic devices. Energy transfer mechanism was investigated for complexes which affirmed the efficacious transfer of energy from ligands to Eu(III) ion. The synthesised complexes were also assayed for antimicrobial and antioxidant properties. All complexes are reported to show better antioxidant behaviour than the prime ligand and also exhibited upstanding antibacterial activities.</p>\",\"PeriodicalId\":18596,\"journal\":{\"name\":\"Methods and Applications in Fluorescence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and Applications in Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1088/2050-6120/ac98f5\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Applications in Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1088/2050-6120/ac98f5","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Photophysical, optical and lasing analysis of fluorinatedβ-keto carboxylate europium(III) complexes.
Six luminescent, bright red Eu(III) complexes with aβ-keto-carboxylic acid as prime ligand and N-donor aromatic systems as auxillary ligand were synthesised via ecologically efficient grinding method. The distinctive red peak (5D0 → 7F2) of Eu(III) ion is exhibited in emission spectra of all complexes. The luminescent properties of complexes were analysed through decay time, color coordinates, luminescence efficiency and Judd Ofelt parameters. The value of Ω2is found to be higher than Ω4which indicated hypersensitive nature of5D0 → 7F2transition. The results established the complexes as a strong contender for red light emitting display devices. The fluorescence branching ratios, stimulated emission cross section, gain band width and optical gain showed the good lasing strength of5D0 → 7F2transition of complexes. The complexes exhibited decent thermal stability and have optical energy band gap value in semiconductor range, thus can have relevance in optoelectronic devices. Energy transfer mechanism was investigated for complexes which affirmed the efficacious transfer of energy from ligands to Eu(III) ion. The synthesised complexes were also assayed for antimicrobial and antioxidant properties. All complexes are reported to show better antioxidant behaviour than the prime ligand and also exhibited upstanding antibacterial activities.
期刊介绍:
Methods and Applications in Fluorescence focuses on new developments in fluorescence spectroscopy, imaging, microscopy, fluorescent probes, labels and (nano)materials. It will feature both methods and advanced (bio)applications and accepts original research articles, reviews and technical notes.