Suvi Ruuskanen, Mikaela Hukkanen, Natacha Garcin, Nina Cossin-Sevrin, Bin-Yan Hsu, Antoine Stier
{"title":"晚熟鸟类早期胚胎表达响应和调节母体甲状腺激素信号的分子“机制”。","authors":"Suvi Ruuskanen, Mikaela Hukkanen, Natacha Garcin, Nina Cossin-Sevrin, Bin-Yan Hsu, Antoine Stier","doi":"10.1086/721556","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractMaternal hormones, such as thyroid hormones (THs) transferred to embryos and eggs, are key signaling pathways for mediating maternal effects. To be able to respond to maternal cues, embryos must express the key molecular \"machinery\" of hormone pathways, such as enzymes and receptors. While altricial birds begin TH production only at or after hatching, experimental evidence suggests that their phenotype can be influenced by maternal THs deposited into the egg. However, it is not understood how or when altricial birds express genes in the TH pathway. For the first time, we measured the expression of key TH-pathway genes in altricial embryos by using two common altricial ecological model species, pied flycatcher (<i>Ficedula hypoleuca</i>) and blue tit (<i>Cyanistes caeruleus</i>). Deiodinase <i>DIO1</i> gene expression could not be reliably confirmed in either species, but deiodinase enzyme genes <i>DIO2</i> and <i>DIO3</i> were expressed in both species. Given that <i>DIO2</i> converts thyroxine to biologically active triiodothyronine and that <i>DIO3</i> mostly converts triiodothyronine to inactive forms of THs, our results suggest that embryos may modulate maternal signals. TH receptors (<i>THRA</i> and <i>THRB</i>) and a monocarboxylate membrane transporter gene (<i>SLC16A2</i>) were also expressed, enabling TH responses. Our results suggest that altricial embryos may be able to respond to and potentially modulate maternal signals conveyed by THs in early development.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":"95 6","pages":"544-550"},"PeriodicalIF":1.8000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Altricial Bird Early-Stage Embryos Express the Molecular \\\"Machinery\\\" to Respond to and Modulate Maternal Thyroid Hormone Cues.\",\"authors\":\"Suvi Ruuskanen, Mikaela Hukkanen, Natacha Garcin, Nina Cossin-Sevrin, Bin-Yan Hsu, Antoine Stier\",\"doi\":\"10.1086/721556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractMaternal hormones, such as thyroid hormones (THs) transferred to embryos and eggs, are key signaling pathways for mediating maternal effects. To be able to respond to maternal cues, embryos must express the key molecular \\\"machinery\\\" of hormone pathways, such as enzymes and receptors. While altricial birds begin TH production only at or after hatching, experimental evidence suggests that their phenotype can be influenced by maternal THs deposited into the egg. However, it is not understood how or when altricial birds express genes in the TH pathway. For the first time, we measured the expression of key TH-pathway genes in altricial embryos by using two common altricial ecological model species, pied flycatcher (<i>Ficedula hypoleuca</i>) and blue tit (<i>Cyanistes caeruleus</i>). Deiodinase <i>DIO1</i> gene expression could not be reliably confirmed in either species, but deiodinase enzyme genes <i>DIO2</i> and <i>DIO3</i> were expressed in both species. Given that <i>DIO2</i> converts thyroxine to biologically active triiodothyronine and that <i>DIO3</i> mostly converts triiodothyronine to inactive forms of THs, our results suggest that embryos may modulate maternal signals. TH receptors (<i>THRA</i> and <i>THRB</i>) and a monocarboxylate membrane transporter gene (<i>SLC16A2</i>) were also expressed, enabling TH responses. Our results suggest that altricial embryos may be able to respond to and potentially modulate maternal signals conveyed by THs in early development.</p>\",\"PeriodicalId\":54609,\"journal\":{\"name\":\"Physiological and Biochemical Zoology\",\"volume\":\"95 6\",\"pages\":\"544-550\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological and Biochemical Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/721556\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Biochemical Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/721556","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Altricial Bird Early-Stage Embryos Express the Molecular "Machinery" to Respond to and Modulate Maternal Thyroid Hormone Cues.
AbstractMaternal hormones, such as thyroid hormones (THs) transferred to embryos and eggs, are key signaling pathways for mediating maternal effects. To be able to respond to maternal cues, embryos must express the key molecular "machinery" of hormone pathways, such as enzymes and receptors. While altricial birds begin TH production only at or after hatching, experimental evidence suggests that their phenotype can be influenced by maternal THs deposited into the egg. However, it is not understood how or when altricial birds express genes in the TH pathway. For the first time, we measured the expression of key TH-pathway genes in altricial embryos by using two common altricial ecological model species, pied flycatcher (Ficedula hypoleuca) and blue tit (Cyanistes caeruleus). Deiodinase DIO1 gene expression could not be reliably confirmed in either species, but deiodinase enzyme genes DIO2 and DIO3 were expressed in both species. Given that DIO2 converts thyroxine to biologically active triiodothyronine and that DIO3 mostly converts triiodothyronine to inactive forms of THs, our results suggest that embryos may modulate maternal signals. TH receptors (THRA and THRB) and a monocarboxylate membrane transporter gene (SLC16A2) were also expressed, enabling TH responses. Our results suggest that altricial embryos may be able to respond to and potentially modulate maternal signals conveyed by THs in early development.
期刊介绍:
Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches primarily publishes original research in animal physiology and biochemistry as considered from behavioral, ecological, and/or evolutionary perspectives. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates across levels of organization is particularly encouraged. Studies that focus on behavior or morphology are welcome, so long as they include ties to physiology or biochemistry, in addition to having an ecological or evolutionary context.
Subdisciplines of interest include nutrition and digestion, salt and water balance, epithelial and membrane transport, gas exchange and transport, acid-base balance, temperature adaptation, energetics, structure and function of macromolecules, chemical coordination and signal transduction, nitrogen metabolism and excretion, locomotion and muscle function, biomechanics, circulation, behavioral, comparative and mechanistic endocrinology, sensory physiology, neural coordination, and ecotoxicology ecoimmunology.