{"title":"5-HT3受体调节雄性小鼠避水应激性膀胱过度活动的排尿模式和膀胱收缩性的变化","authors":"Sarunnuch Sattayachiti , Affan Waemong , Dania Cheaha , Nipaporn Konthapakdee","doi":"10.1016/j.autneu.2022.103040","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p><span>Chronic psychological stress aggravates painful bladder syndrome symptoms. Previous studies suggest roles of 5-HT</span><sub>3</sub><span> receptors in regulating micturition and bladder hypersensitivity. This study aimed to investigate the roles of 5-HT</span><sub>3</sub> receptors in modulating voiding patterns and spontaneous bladder contractile properties in water avoidance stress-induced mice.</p></div><div><h3>Materials and methods</h3><p><span>Voiding patterns in sham stress (SS), water avoidance stress (WS), and water avoidance stress with daily oral gavage of ondansetron<span><span> (1 mg/kg BW) (WA) groups were analyzed after exposure to repeated water avoidance stress for 10 days. Changes in contractile activity of isolated bladder in response to KCl, carbachol, and 5-hydroxytryptamine were determined. Bladder mast cell quantification was examined using </span>toluidine blue </span></span>staining.</p></div><div><h3>Results</h3><p>Urine voided area was significantly decreased in WS group after exposure to 10 days of the stress protocol, which was reversed in the WA group. The WS group had a higher number of urine spots than the SS group. Increased mast cell degranulation<span> was observed in the stressed mice. Bladder strips of the WS group showed higher tonic and amplitude of spontaneous contraction than the SS group, which were normalized by ondansetron administration. Increased response to carbachol-induced bladder contraction was observed in the bladder of stressed mice, which was attenuated with ondansetron pre-incubation.</span></p></div><div><h3>Conclusions</h3><p><span>Water avoidance stress-induced mice exhibited changes in voiding pattern, which was reversed by oral administration with a 5-HT</span><sub>3</sub><span><span> receptor antagonist (ondansetron). Enhanced contractile response to cholinergic stimulation in the </span>urinary bladder<span> of the psychological stress-induced bladder overactivity was mediated through 5-HT</span></span><sub>3</sub> receptors.</p></div>","PeriodicalId":55410,"journal":{"name":"Autonomic Neuroscience-Basic & Clinical","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"5-HT3 receptors modulate changes in voiding pattern and bladder contractility in water avoidance stress-induced bladder overactivity in male mice\",\"authors\":\"Sarunnuch Sattayachiti , Affan Waemong , Dania Cheaha , Nipaporn Konthapakdee\",\"doi\":\"10.1016/j.autneu.2022.103040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p><span>Chronic psychological stress aggravates painful bladder syndrome symptoms. Previous studies suggest roles of 5-HT</span><sub>3</sub><span> receptors in regulating micturition and bladder hypersensitivity. This study aimed to investigate the roles of 5-HT</span><sub>3</sub> receptors in modulating voiding patterns and spontaneous bladder contractile properties in water avoidance stress-induced mice.</p></div><div><h3>Materials and methods</h3><p><span>Voiding patterns in sham stress (SS), water avoidance stress (WS), and water avoidance stress with daily oral gavage of ondansetron<span><span> (1 mg/kg BW) (WA) groups were analyzed after exposure to repeated water avoidance stress for 10 days. Changes in contractile activity of isolated bladder in response to KCl, carbachol, and 5-hydroxytryptamine were determined. Bladder mast cell quantification was examined using </span>toluidine blue </span></span>staining.</p></div><div><h3>Results</h3><p>Urine voided area was significantly decreased in WS group after exposure to 10 days of the stress protocol, which was reversed in the WA group. The WS group had a higher number of urine spots than the SS group. Increased mast cell degranulation<span> was observed in the stressed mice. Bladder strips of the WS group showed higher tonic and amplitude of spontaneous contraction than the SS group, which were normalized by ondansetron administration. Increased response to carbachol-induced bladder contraction was observed in the bladder of stressed mice, which was attenuated with ondansetron pre-incubation.</span></p></div><div><h3>Conclusions</h3><p><span>Water avoidance stress-induced mice exhibited changes in voiding pattern, which was reversed by oral administration with a 5-HT</span><sub>3</sub><span><span> receptor antagonist (ondansetron). Enhanced contractile response to cholinergic stimulation in the </span>urinary bladder<span> of the psychological stress-induced bladder overactivity was mediated through 5-HT</span></span><sub>3</sub> receptors.</p></div>\",\"PeriodicalId\":55410,\"journal\":{\"name\":\"Autonomic Neuroscience-Basic & Clinical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomic Neuroscience-Basic & Clinical\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566070222000996\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomic Neuroscience-Basic & Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566070222000996","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
5-HT3 receptors modulate changes in voiding pattern and bladder contractility in water avoidance stress-induced bladder overactivity in male mice
Purpose
Chronic psychological stress aggravates painful bladder syndrome symptoms. Previous studies suggest roles of 5-HT3 receptors in regulating micturition and bladder hypersensitivity. This study aimed to investigate the roles of 5-HT3 receptors in modulating voiding patterns and spontaneous bladder contractile properties in water avoidance stress-induced mice.
Materials and methods
Voiding patterns in sham stress (SS), water avoidance stress (WS), and water avoidance stress with daily oral gavage of ondansetron (1 mg/kg BW) (WA) groups were analyzed after exposure to repeated water avoidance stress for 10 days. Changes in contractile activity of isolated bladder in response to KCl, carbachol, and 5-hydroxytryptamine were determined. Bladder mast cell quantification was examined using toluidine blue staining.
Results
Urine voided area was significantly decreased in WS group after exposure to 10 days of the stress protocol, which was reversed in the WA group. The WS group had a higher number of urine spots than the SS group. Increased mast cell degranulation was observed in the stressed mice. Bladder strips of the WS group showed higher tonic and amplitude of spontaneous contraction than the SS group, which were normalized by ondansetron administration. Increased response to carbachol-induced bladder contraction was observed in the bladder of stressed mice, which was attenuated with ondansetron pre-incubation.
Conclusions
Water avoidance stress-induced mice exhibited changes in voiding pattern, which was reversed by oral administration with a 5-HT3 receptor antagonist (ondansetron). Enhanced contractile response to cholinergic stimulation in the urinary bladder of the psychological stress-induced bladder overactivity was mediated through 5-HT3 receptors.
期刊介绍:
This is an international journal with broad coverage of all aspects of the autonomic nervous system in man and animals. The main areas of interest include the innervation of blood vessels and viscera, autonomic ganglia, efferent and afferent autonomic pathways, and autonomic nuclei and pathways in the central nervous system.
The Editors will consider papers that deal with any aspect of the autonomic nervous system, including structure, physiology, pharmacology, biochemistry, development, evolution, ageing, behavioural aspects, integrative role and influence on emotional and physical states of the body. Interdisciplinary studies will be encouraged. Studies dealing with human pathology will be also welcome.