{"title":"人工智能和机器学习中的关键概念、常见陷阱和最佳实践:关注放射组学。","authors":"Burak Koçak","doi":"10.5152/dir.2022.211297","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) and machine learning (ML) are increasingly used in radiology research to deal with large and complex imaging data sets. Nowadays, ML tools have become easily accessible to anyone. Such a low threshold to accessibility might lead to inappropriate usage and misinterpretation, without a clear intention. Therefore, ensuring methodological rigor is of paramount importance. Getting closer to the real-world clinical implementation of AI, a basic understanding of the main concepts should be a must for every radiology professional. In this respect, simplified explanations of the key concepts along with pitfalls and recommendations would be helpful for general radiology community to develop and improve their AI mindset. In this work, twenty-two key issues are reviewed within three categories: pre-modeling, modeling, and post-modeling. Firstly, the concept is shortly defined for each issue. Then, related common pitfalls and best practices are provided. Specifically, the issues included in this paper were validity of scientific question, unrepresentative samples, sample size, missing data, quality of reference standard, batch effect, reliability of features, feature scaling, multi-collinearity, class imbalance, data and target leakage, high-dimensional data, optimization, overfitting, generalization, performance metrics, clinical utility, comparison with conventional statistical and clinical methods, interpretability and explainability, randomness, transparent reporting, and sharing data.</p>","PeriodicalId":50582,"journal":{"name":"Diagnostic and Interventional Radiology","volume":" ","pages":"450-462"},"PeriodicalIF":1.7000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9c/8e/dir-28-5-450.PMC9682557.pdf","citationCount":"8","resultStr":"{\"title\":\"Key concepts, common pitfalls, and best practices in artificial intelligence and machine learning: focus on radiomics.\",\"authors\":\"Burak Koçak\",\"doi\":\"10.5152/dir.2022.211297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) and machine learning (ML) are increasingly used in radiology research to deal with large and complex imaging data sets. Nowadays, ML tools have become easily accessible to anyone. Such a low threshold to accessibility might lead to inappropriate usage and misinterpretation, without a clear intention. Therefore, ensuring methodological rigor is of paramount importance. Getting closer to the real-world clinical implementation of AI, a basic understanding of the main concepts should be a must for every radiology professional. In this respect, simplified explanations of the key concepts along with pitfalls and recommendations would be helpful for general radiology community to develop and improve their AI mindset. In this work, twenty-two key issues are reviewed within three categories: pre-modeling, modeling, and post-modeling. Firstly, the concept is shortly defined for each issue. Then, related common pitfalls and best practices are provided. Specifically, the issues included in this paper were validity of scientific question, unrepresentative samples, sample size, missing data, quality of reference standard, batch effect, reliability of features, feature scaling, multi-collinearity, class imbalance, data and target leakage, high-dimensional data, optimization, overfitting, generalization, performance metrics, clinical utility, comparison with conventional statistical and clinical methods, interpretability and explainability, randomness, transparent reporting, and sharing data.</p>\",\"PeriodicalId\":50582,\"journal\":{\"name\":\"Diagnostic and Interventional Radiology\",\"volume\":\" \",\"pages\":\"450-462\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9c/8e/dir-28-5-450.PMC9682557.pdf\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostic and Interventional Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5152/dir.2022.211297\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and Interventional Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5152/dir.2022.211297","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Key concepts, common pitfalls, and best practices in artificial intelligence and machine learning: focus on radiomics.
Artificial intelligence (AI) and machine learning (ML) are increasingly used in radiology research to deal with large and complex imaging data sets. Nowadays, ML tools have become easily accessible to anyone. Such a low threshold to accessibility might lead to inappropriate usage and misinterpretation, without a clear intention. Therefore, ensuring methodological rigor is of paramount importance. Getting closer to the real-world clinical implementation of AI, a basic understanding of the main concepts should be a must for every radiology professional. In this respect, simplified explanations of the key concepts along with pitfalls and recommendations would be helpful for general radiology community to develop and improve their AI mindset. In this work, twenty-two key issues are reviewed within three categories: pre-modeling, modeling, and post-modeling. Firstly, the concept is shortly defined for each issue. Then, related common pitfalls and best practices are provided. Specifically, the issues included in this paper were validity of scientific question, unrepresentative samples, sample size, missing data, quality of reference standard, batch effect, reliability of features, feature scaling, multi-collinearity, class imbalance, data and target leakage, high-dimensional data, optimization, overfitting, generalization, performance metrics, clinical utility, comparison with conventional statistical and clinical methods, interpretability and explainability, randomness, transparent reporting, and sharing data.
期刊介绍:
Diagnostic and Interventional Radiology (Diagn Interv Radiol) is the open access, online-only official publication of Turkish Society of Radiology. It is published bimonthly and the journal’s publication language is English.
The journal is a medium for original articles, reviews, pictorial essays, technical notes related to all fields of diagnostic and interventional radiology.