{"title":"吸烟者唾液和主流烟雾中酚类化合物的测定与差异分析","authors":"Xiaoxi Si, Jianyun Yang, Fengmei Zhang, Ruizhi Zhu, Chunbo Liu, Wei Jiang, Qingpeng Shen, Pei He, Shiyun Tang, Zhenjie Li, Zhihua Liu, Junheng You, Zhang Di","doi":"10.1155/2022/6788394","DOIUrl":null,"url":null,"abstract":"<p><p>To study the differences in phenolic compounds between tobacco smokers' saliva and mainstream smoke, a method was developed for the analysis of 12 phenolic compounds in saliva and mainstream smoke based on ultrahigh-performance liquid chromatography with fluorescence detection (UPLC-FLD). The contents and distributions of phenolic compounds in tobacco smokers' saliva and mainstream smoke were compared. The results were as follows: (1) Phenolic compounds were quantitatively analyzed by the internal standard method using 4-fluorophenol as an internal standard. For smokers' saliva samples, the limits of quantification (LOQs) ranged from 2.2 to 19.1 <i>μ</i>g/L, and the recoveries were from 80.2% to 119.2% at the three spiked levels. For mainstream smoke samples, the LOQs ranged from 0.03 to 0.26 <i>μ</i>g/cig, and the recoveries ranged from 84.9% to 107.0% at the three spiked levels. (2) The contents of phenolic compounds from 14 cigarettes in mainstream smoke and smokers' saliva were determined. In mainstream smoking, the main phenolic compounds were hydroquinone, catechol, phenol, <i>meta</i>- and <i>para</i>-Cresol, and <i>o</i>-methylhydroquinone. In smokers' saliva, the main phenolic compounds were phenol and <i>meta</i>- and <i>para</i>-Cresol and the contents of phenolic compounds in smokers' saliva from different cigarettes were significantly different. (3) The content distribution patterns of phenolic compounds in smokers' saliva differed from those in mainstream smoke. The predominant phenolic compound in mainstream smoke was dihydroxybenzene, while monophenols predominated in smokers' saliva. (4) The contents of phenolic compounds from five kinds of cigarettes were analyzed in the saliva of different smokers using principal component analysis, which indicated that cigarettes with different sensory effects were clearly distinguished by differences in the contents of phenolic compounds in saliva.</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9536968/pdf/","citationCount":"0","resultStr":"{\"title\":\"Determination and Difference Analysis of Phenolic Compounds in Smokers' Saliva and Mainstream Smoke.\",\"authors\":\"Xiaoxi Si, Jianyun Yang, Fengmei Zhang, Ruizhi Zhu, Chunbo Liu, Wei Jiang, Qingpeng Shen, Pei He, Shiyun Tang, Zhenjie Li, Zhihua Liu, Junheng You, Zhang Di\",\"doi\":\"10.1155/2022/6788394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To study the differences in phenolic compounds between tobacco smokers' saliva and mainstream smoke, a method was developed for the analysis of 12 phenolic compounds in saliva and mainstream smoke based on ultrahigh-performance liquid chromatography with fluorescence detection (UPLC-FLD). The contents and distributions of phenolic compounds in tobacco smokers' saliva and mainstream smoke were compared. The results were as follows: (1) Phenolic compounds were quantitatively analyzed by the internal standard method using 4-fluorophenol as an internal standard. For smokers' saliva samples, the limits of quantification (LOQs) ranged from 2.2 to 19.1 <i>μ</i>g/L, and the recoveries were from 80.2% to 119.2% at the three spiked levels. For mainstream smoke samples, the LOQs ranged from 0.03 to 0.26 <i>μ</i>g/cig, and the recoveries ranged from 84.9% to 107.0% at the three spiked levels. (2) The contents of phenolic compounds from 14 cigarettes in mainstream smoke and smokers' saliva were determined. In mainstream smoking, the main phenolic compounds were hydroquinone, catechol, phenol, <i>meta</i>- and <i>para</i>-Cresol, and <i>o</i>-methylhydroquinone. In smokers' saliva, the main phenolic compounds were phenol and <i>meta</i>- and <i>para</i>-Cresol and the contents of phenolic compounds in smokers' saliva from different cigarettes were significantly different. (3) The content distribution patterns of phenolic compounds in smokers' saliva differed from those in mainstream smoke. The predominant phenolic compound in mainstream smoke was dihydroxybenzene, while monophenols predominated in smokers' saliva. (4) The contents of phenolic compounds from five kinds of cigarettes were analyzed in the saliva of different smokers using principal component analysis, which indicated that cigarettes with different sensory effects were clearly distinguished by differences in the contents of phenolic compounds in saliva.</p>\",\"PeriodicalId\":14974,\"journal\":{\"name\":\"Journal of Analytical Methods in Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9536968/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Methods in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6788394\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Methods in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/6788394","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Determination and Difference Analysis of Phenolic Compounds in Smokers' Saliva and Mainstream Smoke.
To study the differences in phenolic compounds between tobacco smokers' saliva and mainstream smoke, a method was developed for the analysis of 12 phenolic compounds in saliva and mainstream smoke based on ultrahigh-performance liquid chromatography with fluorescence detection (UPLC-FLD). The contents and distributions of phenolic compounds in tobacco smokers' saliva and mainstream smoke were compared. The results were as follows: (1) Phenolic compounds were quantitatively analyzed by the internal standard method using 4-fluorophenol as an internal standard. For smokers' saliva samples, the limits of quantification (LOQs) ranged from 2.2 to 19.1 μg/L, and the recoveries were from 80.2% to 119.2% at the three spiked levels. For mainstream smoke samples, the LOQs ranged from 0.03 to 0.26 μg/cig, and the recoveries ranged from 84.9% to 107.0% at the three spiked levels. (2) The contents of phenolic compounds from 14 cigarettes in mainstream smoke and smokers' saliva were determined. In mainstream smoking, the main phenolic compounds were hydroquinone, catechol, phenol, meta- and para-Cresol, and o-methylhydroquinone. In smokers' saliva, the main phenolic compounds were phenol and meta- and para-Cresol and the contents of phenolic compounds in smokers' saliva from different cigarettes were significantly different. (3) The content distribution patterns of phenolic compounds in smokers' saliva differed from those in mainstream smoke. The predominant phenolic compound in mainstream smoke was dihydroxybenzene, while monophenols predominated in smokers' saliva. (4) The contents of phenolic compounds from five kinds of cigarettes were analyzed in the saliva of different smokers using principal component analysis, which indicated that cigarettes with different sensory effects were clearly distinguished by differences in the contents of phenolic compounds in saliva.
期刊介绍:
Journal of Analytical Methods in Chemistry publishes papers reporting methods and instrumentation for chemical analysis, and their application to real-world problems. Articles may be either practical or theoretical.
Subject areas include (but are by no means limited to):
Separation
Spectroscopy
Mass spectrometry
Chromatography
Analytical Sample Preparation
Electrochemical analysis
Hyphenated techniques
Data processing
As well as original research, Journal of Analytical Methods in Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.