{"title":"地磁场中pH电位动力学的环境依赖性波动。","authors":"S Kernbach, O Kernbach","doi":"10.1080/15368378.2022.2125527","DOIUrl":null,"url":null,"abstract":"<p><p>This work explores fluctuations of potentiometric <i>pH</i> dynamics in environments with different configurations of geomagnetic fields. High-resolution <i>pH</i> measurements of test liquids are conducted in electromagnetically shielded and thermally stabilized conditions. External measurement environment in two laboratories is modulated by non-conducting/non-magnetic objects of organic and inorganic origins. Totally, 88 experiments in three groups have been conducted during 4 months. The affected <i>pH</i> dynamics at the level of 10<sup>-2</sup>-10<sup>-5</sup> <i>pH</i> is detected in 93.5%, 82.2% and 74.4% depending on dielectric permittivity of environmental objects. Reaction of potentiometric system has a typical delay of 30-180 minutes. Experiments in both laboratories demonstrated 19% difference of reproducibility rate caused by different background fluctuations. To explain the obtained results, the paper discusses the effects of the Earth's electric and magnetic fields in the form of magnetospheric Poynting vectors or spin-spin forces in geomagnetic field, which affects the productivity of ionic and free-radical reactions. Since the <i>pH</i> level of aqueous solutions controls various biochemical reactions, this mechanism can explain several biological effects with non-contact signal transmission observed in environmental biology and electromagnetic biophysics.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Environment-dependent fluctuations of potentiometric pH dynamics in geomagnetic field.\",\"authors\":\"S Kernbach, O Kernbach\",\"doi\":\"10.1080/15368378.2022.2125527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work explores fluctuations of potentiometric <i>pH</i> dynamics in environments with different configurations of geomagnetic fields. High-resolution <i>pH</i> measurements of test liquids are conducted in electromagnetically shielded and thermally stabilized conditions. External measurement environment in two laboratories is modulated by non-conducting/non-magnetic objects of organic and inorganic origins. Totally, 88 experiments in three groups have been conducted during 4 months. The affected <i>pH</i> dynamics at the level of 10<sup>-2</sup>-10<sup>-5</sup> <i>pH</i> is detected in 93.5%, 82.2% and 74.4% depending on dielectric permittivity of environmental objects. Reaction of potentiometric system has a typical delay of 30-180 minutes. Experiments in both laboratories demonstrated 19% difference of reproducibility rate caused by different background fluctuations. To explain the obtained results, the paper discusses the effects of the Earth's electric and magnetic fields in the form of magnetospheric Poynting vectors or spin-spin forces in geomagnetic field, which affects the productivity of ionic and free-radical reactions. Since the <i>pH</i> level of aqueous solutions controls various biochemical reactions, this mechanism can explain several biological effects with non-contact signal transmission observed in environmental biology and electromagnetic biophysics.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2022.2125527\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2022.2125527","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Environment-dependent fluctuations of potentiometric pH dynamics in geomagnetic field.
This work explores fluctuations of potentiometric pH dynamics in environments with different configurations of geomagnetic fields. High-resolution pH measurements of test liquids are conducted in electromagnetically shielded and thermally stabilized conditions. External measurement environment in two laboratories is modulated by non-conducting/non-magnetic objects of organic and inorganic origins. Totally, 88 experiments in three groups have been conducted during 4 months. The affected pH dynamics at the level of 10-2-10-5pH is detected in 93.5%, 82.2% and 74.4% depending on dielectric permittivity of environmental objects. Reaction of potentiometric system has a typical delay of 30-180 minutes. Experiments in both laboratories demonstrated 19% difference of reproducibility rate caused by different background fluctuations. To explain the obtained results, the paper discusses the effects of the Earth's electric and magnetic fields in the form of magnetospheric Poynting vectors or spin-spin forces in geomagnetic field, which affects the productivity of ionic and free-radical reactions. Since the pH level of aqueous solutions controls various biochemical reactions, this mechanism can explain several biological effects with non-contact signal transmission observed in environmental biology and electromagnetic biophysics.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.