{"title":"微管切断蛋白Fidgetin-like 1促进小鼠卵母细胞减数分裂过程中的纺锤体组织。","authors":"Hua-Feng Shou, Zhen Jin, Yan Yu, Yu-Cheng Lai, Qing Wu, Lei-Lei Gao","doi":"10.1017/S0967199422000417","DOIUrl":null,"url":null,"abstract":"<p><p>Microtubule-severing proteins (MTSPs) play important roles in mitosis and interphase. However, to the best of our knowledge, no previous studies have evaluated the role of MTSPs in female meiosis in mammals. It was found that FIGNL1, a member of MTSPs, was predominantly expressed in mouse oocytes and distributed at the spindle poles during meiosis in the present study. FIGNL1 was co-localized and interacted with γ-tubulin, an important component of the microtubule tissue centre (MTOC). Fignl1 knockdown by specific small interfering RNA caused spindle defects characterized by an abnormal length:width ratio and decreased microtubule density, which consequently led to aberrant chromosome arrangement, oocyte maturation and fertilization obstacles. In conclusion, the present results suggested that FIGNL1 may be an essential factor in oocyte maturation by influencing the meiosis process via the formation of spindles.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Microtubule-severing protein Fidgetin-like 1 promotes spindle organization during meiosis of mouse oocytes.\",\"authors\":\"Hua-Feng Shou, Zhen Jin, Yan Yu, Yu-Cheng Lai, Qing Wu, Lei-Lei Gao\",\"doi\":\"10.1017/S0967199422000417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microtubule-severing proteins (MTSPs) play important roles in mitosis and interphase. However, to the best of our knowledge, no previous studies have evaluated the role of MTSPs in female meiosis in mammals. It was found that FIGNL1, a member of MTSPs, was predominantly expressed in mouse oocytes and distributed at the spindle poles during meiosis in the present study. FIGNL1 was co-localized and interacted with γ-tubulin, an important component of the microtubule tissue centre (MTOC). Fignl1 knockdown by specific small interfering RNA caused spindle defects characterized by an abnormal length:width ratio and decreased microtubule density, which consequently led to aberrant chromosome arrangement, oocyte maturation and fertilization obstacles. In conclusion, the present results suggested that FIGNL1 may be an essential factor in oocyte maturation by influencing the meiosis process via the formation of spindles.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/S0967199422000417\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0967199422000417","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Microtubule-severing protein Fidgetin-like 1 promotes spindle organization during meiosis of mouse oocytes.
Microtubule-severing proteins (MTSPs) play important roles in mitosis and interphase. However, to the best of our knowledge, no previous studies have evaluated the role of MTSPs in female meiosis in mammals. It was found that FIGNL1, a member of MTSPs, was predominantly expressed in mouse oocytes and distributed at the spindle poles during meiosis in the present study. FIGNL1 was co-localized and interacted with γ-tubulin, an important component of the microtubule tissue centre (MTOC). Fignl1 knockdown by specific small interfering RNA caused spindle defects characterized by an abnormal length:width ratio and decreased microtubule density, which consequently led to aberrant chromosome arrangement, oocyte maturation and fertilization obstacles. In conclusion, the present results suggested that FIGNL1 may be an essential factor in oocyte maturation by influencing the meiosis process via the formation of spindles.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.