Ana Claudia Sima, Tarcisio Mendes de Farias, Maria Anisimova, Christophe Dessimoz, Marc Robinson-Rechavi, Erich Zbinden, Kurt Stockinger
{"title":"Bio-SODA UX:通过用户消歧义,在知识图上实现自然语言问题回答。","authors":"Ana Claudia Sima, Tarcisio Mendes de Farias, Maria Anisimova, Christophe Dessimoz, Marc Robinson-Rechavi, Erich Zbinden, Kurt Stockinger","doi":"10.1007/s10619-022-07414-w","DOIUrl":null,"url":null,"abstract":"<p><p>The problem of natural language processing over structured data has become a growing research field, both within the relational database and the Semantic Web community, with significant efforts involved in question answering over knowledge graphs (KGQA). However, many of these approaches are either specifically targeted at <i>open-domain</i> question answering using DBpedia, or require <i>large training datasets</i> to translate a natural language question to SPARQL in order to query the knowledge graph. Hence, these approaches often cannot be applied directly to complex <i>scientific datasets</i> where no prior training data is available. In this paper, we focus on the challenges of natural language processing over knowledge graphs of scientific datasets. In particular, we introduce Bio-SODA, a natural language processing engine that does not require training data in the form of question-answer pairs for generating SPARQL queries. Bio-SODA uses a generic graph-based approach for translating user questions to a ranked list of SPARQL candidate queries. Furthermore, Bio-SODA uses a novel ranking algorithm that includes node centrality as a measure of relevance for selecting the best SPARQL candidate query. Our experiments with real-world datasets across several scientific domains, including the official <i>bioinformatics</i> Question Answering over Linked Data (QALD) challenge, as well as the CORDIS dataset of European projects, show that Bio-SODA outperforms publicly available KGQA systems by an F1-score of least 20% and by an even higher factor on more complex bioinformatics datasets. Finally, we introduce Bio-SODA UX, a graphical user interface designed to assist users in the exploration of large knowledge graphs and in dynamically disambiguating natural language questions that target the data available in these graphs.</p>","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"40 2-3","pages":"409-440"},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458692/pdf/","citationCount":"2","resultStr":"{\"title\":\"Bio-SODA UX: enabling natural language question answering over knowledge graphs with user disambiguation.\",\"authors\":\"Ana Claudia Sima, Tarcisio Mendes de Farias, Maria Anisimova, Christophe Dessimoz, Marc Robinson-Rechavi, Erich Zbinden, Kurt Stockinger\",\"doi\":\"10.1007/s10619-022-07414-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The problem of natural language processing over structured data has become a growing research field, both within the relational database and the Semantic Web community, with significant efforts involved in question answering over knowledge graphs (KGQA). However, many of these approaches are either specifically targeted at <i>open-domain</i> question answering using DBpedia, or require <i>large training datasets</i> to translate a natural language question to SPARQL in order to query the knowledge graph. Hence, these approaches often cannot be applied directly to complex <i>scientific datasets</i> where no prior training data is available. In this paper, we focus on the challenges of natural language processing over knowledge graphs of scientific datasets. In particular, we introduce Bio-SODA, a natural language processing engine that does not require training data in the form of question-answer pairs for generating SPARQL queries. Bio-SODA uses a generic graph-based approach for translating user questions to a ranked list of SPARQL candidate queries. Furthermore, Bio-SODA uses a novel ranking algorithm that includes node centrality as a measure of relevance for selecting the best SPARQL candidate query. Our experiments with real-world datasets across several scientific domains, including the official <i>bioinformatics</i> Question Answering over Linked Data (QALD) challenge, as well as the CORDIS dataset of European projects, show that Bio-SODA outperforms publicly available KGQA systems by an F1-score of least 20% and by an even higher factor on more complex bioinformatics datasets. Finally, we introduce Bio-SODA UX, a graphical user interface designed to assist users in the exploration of large knowledge graphs and in dynamically disambiguating natural language questions that target the data available in these graphs.</p>\",\"PeriodicalId\":50568,\"journal\":{\"name\":\"Distributed and Parallel Databases\",\"volume\":\"40 2-3\",\"pages\":\"409-440\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458692/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed and Parallel Databases\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10619-022-07414-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed and Parallel Databases","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10619-022-07414-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Bio-SODA UX: enabling natural language question answering over knowledge graphs with user disambiguation.
The problem of natural language processing over structured data has become a growing research field, both within the relational database and the Semantic Web community, with significant efforts involved in question answering over knowledge graphs (KGQA). However, many of these approaches are either specifically targeted at open-domain question answering using DBpedia, or require large training datasets to translate a natural language question to SPARQL in order to query the knowledge graph. Hence, these approaches often cannot be applied directly to complex scientific datasets where no prior training data is available. In this paper, we focus on the challenges of natural language processing over knowledge graphs of scientific datasets. In particular, we introduce Bio-SODA, a natural language processing engine that does not require training data in the form of question-answer pairs for generating SPARQL queries. Bio-SODA uses a generic graph-based approach for translating user questions to a ranked list of SPARQL candidate queries. Furthermore, Bio-SODA uses a novel ranking algorithm that includes node centrality as a measure of relevance for selecting the best SPARQL candidate query. Our experiments with real-world datasets across several scientific domains, including the official bioinformatics Question Answering over Linked Data (QALD) challenge, as well as the CORDIS dataset of European projects, show that Bio-SODA outperforms publicly available KGQA systems by an F1-score of least 20% and by an even higher factor on more complex bioinformatics datasets. Finally, we introduce Bio-SODA UX, a graphical user interface designed to assist users in the exploration of large knowledge graphs and in dynamically disambiguating natural language questions that target the data available in these graphs.
期刊介绍:
Distributed and Parallel Databases publishes papers in all the traditional as well as most emerging areas of database research, including:
Availability and reliability;
Benchmarking and performance evaluation, and tuning;
Big Data Storage and Processing;
Cloud Computing and Database-as-a-Service;
Crowdsourcing;
Data curation, annotation and provenance;
Data integration, metadata Management, and interoperability;
Data models, semantics, query languages;
Data mining and knowledge discovery;
Data privacy, security, trust;
Data provenance, workflows, Scientific Data Management;
Data visualization and interactive data exploration;
Data warehousing, OLAP, Analytics;
Graph data management, RDF, social networks;
Information Extraction and Data Cleaning;
Middleware and Workflow Management;
Modern Hardware and In-Memory Database Systems;
Query Processing and Optimization;
Semantic Web and open data;
Social Networks;
Storage, indexing, and physical database design;
Streams, sensor networks, and complex event processing;
Strings, Texts, and Keyword Search;
Spatial, temporal, and spatio-temporal databases;
Transaction processing;
Uncertain, probabilistic, and approximate databases.