{"title":"KDELR2-KIF20A轴通过增强高尔基蛋白介导的分泌促进膀胱癌的生长和转移。","authors":"Xiangui Meng, Weiquan Li, Hongwei Yuan, Wei Dong, Wen Xiao, Xiaoping Zhang","doi":"10.1186/s12575-022-00174-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bladder cancer (BCa) is a fatal form of cancer worldwide associated with a poor prognosis. Identifying novel drivers of growth and metastasis hold therapeutic potential for the disease. Transport homeostasis between the endoplasmic reticulum and Golgi and the secretion of matrix metalloproteinases (MMPs) mediated by Golgi have been reported to be closely associated with tumor progression. However, to date, mechanistic studies remain limited.</p><p><strong>Results: </strong>Here, we identified KDELR2 as a potential risk factor with prognostic value in patients with BCa, especially those harbouring the KDELR2 amplification. In addition, we found that KDELR2 is a regulator of BCa cell proliferation and tumorigenicity based on bioinformatic analysis with functional studies. Mechanistically, we revealed that KDELR2 could regulate the expression of KIF20A, thus stimulating the expression of MMP2, MMP9 and MKI67. Functionally, the overexpression of KDELR2 and KIF20A markedly promoted proliferation, migration, and invasion in vitro and enhanced tumor growth in vivo, while knockdown of KDELR2 and KIF20A exerted the opposite effects. And the overexpression of KDELR2 also enhanced lymph node metastasis in vivo.</p><p><strong>Conclusions: </strong>Collectively, our findings clarified a hitherto unexplored mechanism of KDELR2-KIF20A axis in increasing Golgi-mediated secretion of MMPs to drive tumor progression in BCa.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":" ","pages":"12"},"PeriodicalIF":4.3000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9465899/pdf/","citationCount":"8","resultStr":"{\"title\":\"KDELR2-KIF20A axis facilitates bladder cancer growth and metastasis by enhancing Golgi-mediated secretion.\",\"authors\":\"Xiangui Meng, Weiquan Li, Hongwei Yuan, Wei Dong, Wen Xiao, Xiaoping Zhang\",\"doi\":\"10.1186/s12575-022-00174-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Bladder cancer (BCa) is a fatal form of cancer worldwide associated with a poor prognosis. Identifying novel drivers of growth and metastasis hold therapeutic potential for the disease. Transport homeostasis between the endoplasmic reticulum and Golgi and the secretion of matrix metalloproteinases (MMPs) mediated by Golgi have been reported to be closely associated with tumor progression. However, to date, mechanistic studies remain limited.</p><p><strong>Results: </strong>Here, we identified KDELR2 as a potential risk factor with prognostic value in patients with BCa, especially those harbouring the KDELR2 amplification. In addition, we found that KDELR2 is a regulator of BCa cell proliferation and tumorigenicity based on bioinformatic analysis with functional studies. Mechanistically, we revealed that KDELR2 could regulate the expression of KIF20A, thus stimulating the expression of MMP2, MMP9 and MKI67. Functionally, the overexpression of KDELR2 and KIF20A markedly promoted proliferation, migration, and invasion in vitro and enhanced tumor growth in vivo, while knockdown of KDELR2 and KIF20A exerted the opposite effects. And the overexpression of KDELR2 also enhanced lymph node metastasis in vivo.</p><p><strong>Conclusions: </strong>Collectively, our findings clarified a hitherto unexplored mechanism of KDELR2-KIF20A axis in increasing Golgi-mediated secretion of MMPs to drive tumor progression in BCa.</p>\",\"PeriodicalId\":8960,\"journal\":{\"name\":\"Biological Procedures Online\",\"volume\":\" \",\"pages\":\"12\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9465899/pdf/\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Procedures Online\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12575-022-00174-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Procedures Online","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12575-022-00174-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
KDELR2-KIF20A axis facilitates bladder cancer growth and metastasis by enhancing Golgi-mediated secretion.
Background: Bladder cancer (BCa) is a fatal form of cancer worldwide associated with a poor prognosis. Identifying novel drivers of growth and metastasis hold therapeutic potential for the disease. Transport homeostasis between the endoplasmic reticulum and Golgi and the secretion of matrix metalloproteinases (MMPs) mediated by Golgi have been reported to be closely associated with tumor progression. However, to date, mechanistic studies remain limited.
Results: Here, we identified KDELR2 as a potential risk factor with prognostic value in patients with BCa, especially those harbouring the KDELR2 amplification. In addition, we found that KDELR2 is a regulator of BCa cell proliferation and tumorigenicity based on bioinformatic analysis with functional studies. Mechanistically, we revealed that KDELR2 could regulate the expression of KIF20A, thus stimulating the expression of MMP2, MMP9 and MKI67. Functionally, the overexpression of KDELR2 and KIF20A markedly promoted proliferation, migration, and invasion in vitro and enhanced tumor growth in vivo, while knockdown of KDELR2 and KIF20A exerted the opposite effects. And the overexpression of KDELR2 also enhanced lymph node metastasis in vivo.
Conclusions: Collectively, our findings clarified a hitherto unexplored mechanism of KDELR2-KIF20A axis in increasing Golgi-mediated secretion of MMPs to drive tumor progression in BCa.
期刊介绍:
iological Procedures Online publishes articles that improve access to techniques and methods in the medical and biological sciences.
We are also interested in short but important research discoveries, such as new animal disease models.
Topics of interest include, but are not limited to:
Reports of new research techniques and applications of existing techniques
Technical analyses of research techniques and published reports
Validity analyses of research methods and approaches to judging the validity of research reports
Application of common research methods
Reviews of existing techniques
Novel/important product information
Biological Procedures Online places emphasis on multidisciplinary approaches that integrate methodologies from medicine, biology, chemistry, imaging, engineering, bioinformatics, computer science, and systems analysis.