Ivy J Mutai, Angela A Juma, Martin I Inyimili, Atunga Nyachieo, Anthony K Nyamache
{"title":"肯尼亚不同分离的裂解噬菌体对多重耐药阴沟肠杆菌分离株的疗效。","authors":"Ivy J Mutai, Angela A Juma, Martin I Inyimili, Atunga Nyachieo, Anthony K Nyamache","doi":"10.4102/ajlm.v11i1.1673","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong><i>Enterobacter cloacae</i> causes nosocomial infections in 15% of patients in low- and middle-income countries with emergence of carbapenem resistance. The utilisation of bacteriophages for therapeutic purposes is crucial for eradicating these resistant bacterial strains.</p><p><strong>Objective: </strong>This study evaluated the efficacy of lytic phages on bacterial isolates of <i>E. cloacae</i> and determined their stability in various physicochemical conditions.</p><p><strong>Methods: </strong>Twenty-nine lytic phages were isolated from the waste water of six informal settlements in Nairobi County, Kenya, from July 2019 to December 2020 and cross-reacted with 30 anonymised clinical isolates of <i>E. cloacae.</i> Six phages were then selected for physicochemical property studies. Phages were described as potent upon lysing any bacterial strain in the panel.</p><p><strong>Results: </strong>Selected phages were stable at 4 °C - 50 °C with a 5.1% decrease in titre in four of six phages and a 1.8% increase in titre in two of six phages at 50 °C. The phages were efficient following two weeks incubation at 4 °C with optimal activity at human body temperature (37 °C) and an optimal pH of 7.5. Phages were active at 0.002 M and 0.015 M concentrations of Ca<sup>2+</sup> ions. The efficiency of all phages decreased with increased exposure to ultraviolet light. All phages (<i>n</i> = 29) showed cross-reactivity against anonymised clinical isolates of <i>E. cloacae</i> strains (<i>n</i> = 30). The most potent phage lysed 67.0% of bacterial strains; the least potent phage lysed 27.0%.</p><p><strong>Conclusion: </strong>This study reveals the existence of therapeutic phages in Kenya that are potent enough for treatment of multi-drug resistant <i>E. cloacae.</i></p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"1673"},"PeriodicalIF":16.4000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453119/pdf/","citationCount":"2","resultStr":"{\"title\":\"Efficacy of diversely isolated lytic phages against multi-drug resistant <i>Enterobacter cloacae</i> isolates in Kenya.\",\"authors\":\"Ivy J Mutai, Angela A Juma, Martin I Inyimili, Atunga Nyachieo, Anthony K Nyamache\",\"doi\":\"10.4102/ajlm.v11i1.1673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong><i>Enterobacter cloacae</i> causes nosocomial infections in 15% of patients in low- and middle-income countries with emergence of carbapenem resistance. The utilisation of bacteriophages for therapeutic purposes is crucial for eradicating these resistant bacterial strains.</p><p><strong>Objective: </strong>This study evaluated the efficacy of lytic phages on bacterial isolates of <i>E. cloacae</i> and determined their stability in various physicochemical conditions.</p><p><strong>Methods: </strong>Twenty-nine lytic phages were isolated from the waste water of six informal settlements in Nairobi County, Kenya, from July 2019 to December 2020 and cross-reacted with 30 anonymised clinical isolates of <i>E. cloacae.</i> Six phages were then selected for physicochemical property studies. Phages were described as potent upon lysing any bacterial strain in the panel.</p><p><strong>Results: </strong>Selected phages were stable at 4 °C - 50 °C with a 5.1% decrease in titre in four of six phages and a 1.8% increase in titre in two of six phages at 50 °C. The phages were efficient following two weeks incubation at 4 °C with optimal activity at human body temperature (37 °C) and an optimal pH of 7.5. Phages were active at 0.002 M and 0.015 M concentrations of Ca<sup>2+</sup> ions. The efficiency of all phages decreased with increased exposure to ultraviolet light. All phages (<i>n</i> = 29) showed cross-reactivity against anonymised clinical isolates of <i>E. cloacae</i> strains (<i>n</i> = 30). The most potent phage lysed 67.0% of bacterial strains; the least potent phage lysed 27.0%.</p><p><strong>Conclusion: </strong>This study reveals the existence of therapeutic phages in Kenya that are potent enough for treatment of multi-drug resistant <i>E. cloacae.</i></p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\" \",\"pages\":\"1673\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453119/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4102/ajlm.v11i1.1673\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4102/ajlm.v11i1.1673","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Efficacy of diversely isolated lytic phages against multi-drug resistant Enterobacter cloacae isolates in Kenya.
Background: Enterobacter cloacae causes nosocomial infections in 15% of patients in low- and middle-income countries with emergence of carbapenem resistance. The utilisation of bacteriophages for therapeutic purposes is crucial for eradicating these resistant bacterial strains.
Objective: This study evaluated the efficacy of lytic phages on bacterial isolates of E. cloacae and determined their stability in various physicochemical conditions.
Methods: Twenty-nine lytic phages were isolated from the waste water of six informal settlements in Nairobi County, Kenya, from July 2019 to December 2020 and cross-reacted with 30 anonymised clinical isolates of E. cloacae. Six phages were then selected for physicochemical property studies. Phages were described as potent upon lysing any bacterial strain in the panel.
Results: Selected phages were stable at 4 °C - 50 °C with a 5.1% decrease in titre in four of six phages and a 1.8% increase in titre in two of six phages at 50 °C. The phages were efficient following two weeks incubation at 4 °C with optimal activity at human body temperature (37 °C) and an optimal pH of 7.5. Phages were active at 0.002 M and 0.015 M concentrations of Ca2+ ions. The efficiency of all phages decreased with increased exposure to ultraviolet light. All phages (n = 29) showed cross-reactivity against anonymised clinical isolates of E. cloacae strains (n = 30). The most potent phage lysed 67.0% of bacterial strains; the least potent phage lysed 27.0%.
Conclusion: This study reveals the existence of therapeutic phages in Kenya that are potent enough for treatment of multi-drug resistant E. cloacae.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.