{"title":"慢性间歇性缺氧大鼠颈动脉体血管球细胞p11和TASK1通道的表达","authors":"Hidetada Matsuoka, Mieczyslaw Pokorski, Kotaro Takeda, Yasumasa Okada, Keita Harada, Masumi Inoue","doi":"10.7888/juoeh.44.249","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic intermittent hypoxia (CIH) has been used as a model to mimic nocturnal apnea, which is associated with hypertension. One of the mechanisms for hypertension in patients with nocturnal apnea is an enhancement of the plasma membrane response to acute hypoxia in carotid body glomus cells. Hypoxia is known to induce depolarization via inhibiting TWIK-related acid-sensitive K<sup>+</sup> (TASK) channels, one type of leak K<sup>+</sup> channels, in glomus cells. The present experiment was undertaken to immunocytochemically investigate the effects of CIH on the expression and intracellular localization of TASK1 channels and p11 that critically affect the trafficking of TASK1 to the cell surface. The expression levels of TASK1 proteins and p11 and their intracellular localization in rat carotid body glomus cells were not noticeably affected by CIH, suggesting that the enhanced membrane response to acute hypoxia is not due to an increase in surface TASK channels.</p>","PeriodicalId":17570,"journal":{"name":"Journal of UOEH","volume":"44 3","pages":"249-255"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expression of p11 and TASK1 Channels in Rat Carotid Body Glomus Cells Subjected to Chronic Intermittent Hypoxia.\",\"authors\":\"Hidetada Matsuoka, Mieczyslaw Pokorski, Kotaro Takeda, Yasumasa Okada, Keita Harada, Masumi Inoue\",\"doi\":\"10.7888/juoeh.44.249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic intermittent hypoxia (CIH) has been used as a model to mimic nocturnal apnea, which is associated with hypertension. One of the mechanisms for hypertension in patients with nocturnal apnea is an enhancement of the plasma membrane response to acute hypoxia in carotid body glomus cells. Hypoxia is known to induce depolarization via inhibiting TWIK-related acid-sensitive K<sup>+</sup> (TASK) channels, one type of leak K<sup>+</sup> channels, in glomus cells. The present experiment was undertaken to immunocytochemically investigate the effects of CIH on the expression and intracellular localization of TASK1 channels and p11 that critically affect the trafficking of TASK1 to the cell surface. The expression levels of TASK1 proteins and p11 and their intracellular localization in rat carotid body glomus cells were not noticeably affected by CIH, suggesting that the enhanced membrane response to acute hypoxia is not due to an increase in surface TASK channels.</p>\",\"PeriodicalId\":17570,\"journal\":{\"name\":\"Journal of UOEH\",\"volume\":\"44 3\",\"pages\":\"249-255\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of UOEH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7888/juoeh.44.249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of UOEH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7888/juoeh.44.249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Expression of p11 and TASK1 Channels in Rat Carotid Body Glomus Cells Subjected to Chronic Intermittent Hypoxia.
Chronic intermittent hypoxia (CIH) has been used as a model to mimic nocturnal apnea, which is associated with hypertension. One of the mechanisms for hypertension in patients with nocturnal apnea is an enhancement of the plasma membrane response to acute hypoxia in carotid body glomus cells. Hypoxia is known to induce depolarization via inhibiting TWIK-related acid-sensitive K+ (TASK) channels, one type of leak K+ channels, in glomus cells. The present experiment was undertaken to immunocytochemically investigate the effects of CIH on the expression and intracellular localization of TASK1 channels and p11 that critically affect the trafficking of TASK1 to the cell surface. The expression levels of TASK1 proteins and p11 and their intracellular localization in rat carotid body glomus cells were not noticeably affected by CIH, suggesting that the enhanced membrane response to acute hypoxia is not due to an increase in surface TASK channels.