重复上肢动作中不同疲劳位置对运动协调影响的非控制流形分析。

IF 0.9 4区 医学 Q4 NEUROSCIENCES
Motor Control Pub Date : 2022-09-10 Print Date: 2022-10-01 DOI:10.1123/mc.2021-0114
Matthew Slopecki, Fariba Hasanbarani, Chen Yang, Christopher A Bailey, Julie N Côté
{"title":"重复上肢动作中不同疲劳位置对运动协调影响的非控制流形分析。","authors":"Matthew Slopecki,&nbsp;Fariba Hasanbarani,&nbsp;Chen Yang,&nbsp;Christopher A Bailey,&nbsp;Julie N Côté","doi":"10.1123/mc.2021-0114","DOIUrl":null,"url":null,"abstract":"<p><p>Fatigue at individual joints is known to affect interjoint coordination during repetitive multijoint tasks. However, how these coordination adjustments affect overall task stability is unknown. Twelve participants completed a repetitive pointing task at rest and after fatigue of the shoulder, elbow, and trunk. Upper-limb and trunk kinematics were collected. Uncontrolled manifold framework was applied to a kinematic model to link elemental variables to endpoint fingertip position. Mixed and one-way analysis of variances determined effects (phase and fatigue location) on variance components and synergy index, respectively. The shoulder fatigue condition had the greatest impact in causing increases in variance components and a decreased synergy index in the late phase of movement, suggesting more destabilization of the interjoint task caused by shoulder fatigue.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uncontrolled Manifold Analysis of the Effects of Different Fatigue Locations on Kinematic Coordination During a Repetitive Upper-Limb Task.\",\"authors\":\"Matthew Slopecki,&nbsp;Fariba Hasanbarani,&nbsp;Chen Yang,&nbsp;Christopher A Bailey,&nbsp;Julie N Côté\",\"doi\":\"10.1123/mc.2021-0114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fatigue at individual joints is known to affect interjoint coordination during repetitive multijoint tasks. However, how these coordination adjustments affect overall task stability is unknown. Twelve participants completed a repetitive pointing task at rest and after fatigue of the shoulder, elbow, and trunk. Upper-limb and trunk kinematics were collected. Uncontrolled manifold framework was applied to a kinematic model to link elemental variables to endpoint fingertip position. Mixed and one-way analysis of variances determined effects (phase and fatigue location) on variance components and synergy index, respectively. The shoulder fatigue condition had the greatest impact in causing increases in variance components and a decreased synergy index in the late phase of movement, suggesting more destabilization of the interjoint task caused by shoulder fatigue.</p>\",\"PeriodicalId\":49795,\"journal\":{\"name\":\"Motor Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Motor Control\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1123/mc.2021-0114\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Motor Control","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/mc.2021-0114","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

众所周知,在重复性多关节任务中,单个关节的疲劳会影响关节间的协调。然而,这些协调调整如何影响整体任务稳定性是未知的。12名参与者在休息时和肩部、肘部和躯干疲劳后完成了一项重复性的指指任务。采集上肢和躯干的运动学数据。将非受控流形框架应用于运动学模型,将元素变量与端点指尖位置联系起来。混合方差分析和单向方差分析分别确定了(相位和疲劳位置)对方差成分和协同指数的影响。肩关节疲劳状态对运动后期方差分量增加和协同指数下降的影响最大,表明肩关节疲劳导致关节间任务更不稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncontrolled Manifold Analysis of the Effects of Different Fatigue Locations on Kinematic Coordination During a Repetitive Upper-Limb Task.

Fatigue at individual joints is known to affect interjoint coordination during repetitive multijoint tasks. However, how these coordination adjustments affect overall task stability is unknown. Twelve participants completed a repetitive pointing task at rest and after fatigue of the shoulder, elbow, and trunk. Upper-limb and trunk kinematics were collected. Uncontrolled manifold framework was applied to a kinematic model to link elemental variables to endpoint fingertip position. Mixed and one-way analysis of variances determined effects (phase and fatigue location) on variance components and synergy index, respectively. The shoulder fatigue condition had the greatest impact in causing increases in variance components and a decreased synergy index in the late phase of movement, suggesting more destabilization of the interjoint task caused by shoulder fatigue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Motor Control
Motor Control 医学-神经科学
CiteScore
1.80
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: Motor Control (MC), a peer-reviewed journal, provides a multidisciplinary examination of human movement across the lifespan. To keep you abreast of current developments in the field of motor control, it offers timely coverage of important topics, including issues related to motor disorders. This international journal publishes many types of research papers, from clinical experimental to modeling and theoretical studies. These papers come from such varied disciplines as biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation. Motor Control, the official journal of the International Society of Motor Control, is designed to provide a multidisciplinary forum for the exchange of scientific information on the control of human movement across the lifespan, including issues related to motor disorders. Motor Control encourages submission of papers from a variety of disciplines including, but not limited to, biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation. This peer-reviewed journal publishes a wide variety of types of research papers including clinical experimental, modeling, and theoretical studies. To be considered for publication, papers should clearly demonstrate a contribution to the understanding of control of movement. In addition to publishing research papers, Motor Control publishes review articles, quick communications, commentaries, target articles, and book reviews. When warranted, an entire issue may be devoted to a specific topic within the area of motor control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信