{"title":"成纤维细胞中缺乏Lmna:非心肌细胞在DCM中的新作用。","authors":"Xinjie Wang, Weijia Luo, Jiang Chang","doi":"10.20517/jca.2022.26","DOIUrl":null,"url":null,"abstract":"LMNA gene encodes intermediate filament proteins Lamin A/C. Lamin A and Lamin C polymerize to form nuclear lamina, mainly located in the inner layer of the nuclear envelope. As an essential component of the nuclear envelope, Lamins are necessary for nuclear structural integrity and participate in chromatin organization, cell cycle regulation, and DNA damage response [1] . By far, LMNA has the largest and most","PeriodicalId":75051,"journal":{"name":"The journal of cardiovascular aging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9450693/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deficient <i>Lmna</i> in fibroblasts: an emerging role of non-cardiomyocytes in DCM.\",\"authors\":\"Xinjie Wang, Weijia Luo, Jiang Chang\",\"doi\":\"10.20517/jca.2022.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LMNA gene encodes intermediate filament proteins Lamin A/C. Lamin A and Lamin C polymerize to form nuclear lamina, mainly located in the inner layer of the nuclear envelope. As an essential component of the nuclear envelope, Lamins are necessary for nuclear structural integrity and participate in chromatin organization, cell cycle regulation, and DNA damage response [1] . By far, LMNA has the largest and most\",\"PeriodicalId\":75051,\"journal\":{\"name\":\"The journal of cardiovascular aging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9450693/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The journal of cardiovascular aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/jca.2022.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of cardiovascular aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/jca.2022.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Deficient Lmna in fibroblasts: an emerging role of non-cardiomyocytes in DCM.
LMNA gene encodes intermediate filament proteins Lamin A/C. Lamin A and Lamin C polymerize to form nuclear lamina, mainly located in the inner layer of the nuclear envelope. As an essential component of the nuclear envelope, Lamins are necessary for nuclear structural integrity and participate in chromatin organization, cell cycle regulation, and DNA damage response [1] . By far, LMNA has the largest and most