{"title":"18β-甘草次酸通过PERK/eIF2α/NF-κB信号通路改善内质网应激性肺动脉高压炎症。","authors":"Jia-Ling Wang, Hui Liu, Zhi-Cheng Jing, Fang Zhao, Ru Zhou","doi":"10.4103/0304-4920.354801","DOIUrl":null,"url":null,"abstract":"<p><p>Endoplasmic reticulum stress (ERS)-induced inflammation participates in the occurrence of pulmonary arterial hypertension (PAH) by promoting pulmonary vascular remodeling, which involved in the activation of PERK/eIF2α/NF-κB signaling pathway. 18β-Glycyrrhetinic acid (18β-GA) has been found efficacious for attenuating PAH through its anti-remodeling effects in our previous research and it remains unclear whether 18β-GA has an effect on the remodeling caused by ERS-induced inflammation. In this study, we made observations in monocrotaline-induced PAH rats and found improvement of hemodynamic and histopathological parameters, decreases in the right ventricular hypertrophy index, and alleviation of pulmonary vascular remodeling after 18β-GA administration in vivo. Moreover, 18β-GA could significantly inhibit the proliferation and DNA synthesis of human pulmonary arterial smooth muscle cells (HPASMCs) induced by platelet-derived growth factor BB. At the cellular and molecular levels, we found that 18β-GA could significantly reduce the accumulation of misfolded protein in rat lung tissue, inhibit ERS activation, reduce the expression of GRP78, p-PERK, p-eIF2α, and p-NF-κB p65, and increase IκB protein expression. 18β-GA could inhibit the migration of NF-κB into the nucleus, reduce the contents of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and monocyte chemoattractant protein-1 (MCP-1) in the culture supernatant of HPASMCs, and reduce GRP78, p-PERK, p-eIF2α, p-NF-κB p65, TNF-α, IL-6, and MCP-1 protein expression, increase IκB protein expression in HPASMCs. According to what we observed, this study indicated that 18β-GA could treat PAH, which is related to the inhibition of PERK/eIF2α/NF-κB signaling pathway.</p>","PeriodicalId":10251,"journal":{"name":"Chinese Journal of Physiology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"18β-Glycyrrhetinic acid ameliorates endoplasmic reticulum stress-induced inflammation in pulmonary arterial hypertension through PERK/eIF2α/NF-κB signaling.\",\"authors\":\"Jia-Ling Wang, Hui Liu, Zhi-Cheng Jing, Fang Zhao, Ru Zhou\",\"doi\":\"10.4103/0304-4920.354801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endoplasmic reticulum stress (ERS)-induced inflammation participates in the occurrence of pulmonary arterial hypertension (PAH) by promoting pulmonary vascular remodeling, which involved in the activation of PERK/eIF2α/NF-κB signaling pathway. 18β-Glycyrrhetinic acid (18β-GA) has been found efficacious for attenuating PAH through its anti-remodeling effects in our previous research and it remains unclear whether 18β-GA has an effect on the remodeling caused by ERS-induced inflammation. In this study, we made observations in monocrotaline-induced PAH rats and found improvement of hemodynamic and histopathological parameters, decreases in the right ventricular hypertrophy index, and alleviation of pulmonary vascular remodeling after 18β-GA administration in vivo. Moreover, 18β-GA could significantly inhibit the proliferation and DNA synthesis of human pulmonary arterial smooth muscle cells (HPASMCs) induced by platelet-derived growth factor BB. At the cellular and molecular levels, we found that 18β-GA could significantly reduce the accumulation of misfolded protein in rat lung tissue, inhibit ERS activation, reduce the expression of GRP78, p-PERK, p-eIF2α, and p-NF-κB p65, and increase IκB protein expression. 18β-GA could inhibit the migration of NF-κB into the nucleus, reduce the contents of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and monocyte chemoattractant protein-1 (MCP-1) in the culture supernatant of HPASMCs, and reduce GRP78, p-PERK, p-eIF2α, p-NF-κB p65, TNF-α, IL-6, and MCP-1 protein expression, increase IκB protein expression in HPASMCs. According to what we observed, this study indicated that 18β-GA could treat PAH, which is related to the inhibition of PERK/eIF2α/NF-κB signaling pathway.</p>\",\"PeriodicalId\":10251,\"journal\":{\"name\":\"Chinese Journal of Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/0304-4920.354801\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/0304-4920.354801","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
18β-Glycyrrhetinic acid ameliorates endoplasmic reticulum stress-induced inflammation in pulmonary arterial hypertension through PERK/eIF2α/NF-κB signaling.
Endoplasmic reticulum stress (ERS)-induced inflammation participates in the occurrence of pulmonary arterial hypertension (PAH) by promoting pulmonary vascular remodeling, which involved in the activation of PERK/eIF2α/NF-κB signaling pathway. 18β-Glycyrrhetinic acid (18β-GA) has been found efficacious for attenuating PAH through its anti-remodeling effects in our previous research and it remains unclear whether 18β-GA has an effect on the remodeling caused by ERS-induced inflammation. In this study, we made observations in monocrotaline-induced PAH rats and found improvement of hemodynamic and histopathological parameters, decreases in the right ventricular hypertrophy index, and alleviation of pulmonary vascular remodeling after 18β-GA administration in vivo. Moreover, 18β-GA could significantly inhibit the proliferation and DNA synthesis of human pulmonary arterial smooth muscle cells (HPASMCs) induced by platelet-derived growth factor BB. At the cellular and molecular levels, we found that 18β-GA could significantly reduce the accumulation of misfolded protein in rat lung tissue, inhibit ERS activation, reduce the expression of GRP78, p-PERK, p-eIF2α, and p-NF-κB p65, and increase IκB protein expression. 18β-GA could inhibit the migration of NF-κB into the nucleus, reduce the contents of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and monocyte chemoattractant protein-1 (MCP-1) in the culture supernatant of HPASMCs, and reduce GRP78, p-PERK, p-eIF2α, p-NF-κB p65, TNF-α, IL-6, and MCP-1 protein expression, increase IκB protein expression in HPASMCs. According to what we observed, this study indicated that 18β-GA could treat PAH, which is related to the inhibition of PERK/eIF2α/NF-κB signaling pathway.
期刊介绍:
Chinese Journal of Physiology is a multidisciplinary open access journal.
Chinese Journal of Physiology (CJP) publishes high quality original research papers in physiology and pathophysiology by authors all over the world. CJP welcomes submitted research papers in all aspects of physiology science in the molecular, cellular, tissue and systemic levels. Multidisciplinary sciences with a focus to understand the role of physiology in health and disease are also encouraged.
Chinese Journal of Physiology accepts fourfold article types: Original Article, Review Article (Mini-Review included), Short Communication, and Editorial. There is no cost for readers to access the full-text contents of publications.