{"title":"氮源对鼠李糖乳杆菌耐热性和氧化性的影响。","authors":"Chenchen Zhang, Yuemei Han, Ya Gui, Yunchao Wa, Dawei Chen, Yujun Huang, Boxing Yin, Ruixia Gu","doi":"10.1093/jimb/kuac020","DOIUrl":null,"url":null,"abstract":"<p><p>It has been found that 32 genes related to nitrogen source metabolism in Lacticaseibacillus rhamnosus are downregulated under both heat stress and oxidative stress. In this study, the influence of different nitrogen sources within the growth medium on the tolerance of L. rhamnosus to heat stress and oxidative stress was investigated. Tryptone-free MRS was found to enhance the tolerance of L. rhamnosus hsryfm 1301 to heat stress and oxidative stress during the whole growth period, and this result was universal for all L. rhamnosus species analyzed. The strongest strengthening effect occurred when the OD600 value reached 2.0, at which the survival rates under heat stress and oxidative stress increased 130-fold and 40-fold, respectively. After supplementing phenylalanine, isoleucine, glutamate, valine, histidine, or tryptophan into the tryptone-free MRS, the tolerance of L. rhamnosus to heat stress and oxidative stress exhibited a sharp drop. The spray drying survival rate of L. rhamnosus hsryfm 1301 cultured in the tryptone-free MRS rose to 75% (from 30%), and the spray dried powder also performed better in the experimentally simulated gastrointestinal digestion. These results showed that decreasing the intake of amino acids is an important mechanism for L. rhamnosus to tolerate heat stress and oxidative stress. When L. rhamnosus is cultured for spray drying, the concentration of the nitrogen source's components should be an important consideration.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"49 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7e/41/kuac020.PMC9559300.pdf","citationCount":"1","resultStr":"{\"title\":\"Influence of nitrogen sources on the tolerance of Lacticaseibacillus rhamnosus to heat stress and oxidative stress.\",\"authors\":\"Chenchen Zhang, Yuemei Han, Ya Gui, Yunchao Wa, Dawei Chen, Yujun Huang, Boxing Yin, Ruixia Gu\",\"doi\":\"10.1093/jimb/kuac020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has been found that 32 genes related to nitrogen source metabolism in Lacticaseibacillus rhamnosus are downregulated under both heat stress and oxidative stress. In this study, the influence of different nitrogen sources within the growth medium on the tolerance of L. rhamnosus to heat stress and oxidative stress was investigated. Tryptone-free MRS was found to enhance the tolerance of L. rhamnosus hsryfm 1301 to heat stress and oxidative stress during the whole growth period, and this result was universal for all L. rhamnosus species analyzed. The strongest strengthening effect occurred when the OD600 value reached 2.0, at which the survival rates under heat stress and oxidative stress increased 130-fold and 40-fold, respectively. After supplementing phenylalanine, isoleucine, glutamate, valine, histidine, or tryptophan into the tryptone-free MRS, the tolerance of L. rhamnosus to heat stress and oxidative stress exhibited a sharp drop. The spray drying survival rate of L. rhamnosus hsryfm 1301 cultured in the tryptone-free MRS rose to 75% (from 30%), and the spray dried powder also performed better in the experimentally simulated gastrointestinal digestion. These results showed that decreasing the intake of amino acids is an important mechanism for L. rhamnosus to tolerate heat stress and oxidative stress. When L. rhamnosus is cultured for spray drying, the concentration of the nitrogen source's components should be an important consideration.</p>\",\"PeriodicalId\":16092,\"journal\":{\"name\":\"Journal of Industrial Microbiology & Biotechnology\",\"volume\":\"49 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7e/41/kuac020.PMC9559300.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Microbiology & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jimb/kuac020\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuac020","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Influence of nitrogen sources on the tolerance of Lacticaseibacillus rhamnosus to heat stress and oxidative stress.
It has been found that 32 genes related to nitrogen source metabolism in Lacticaseibacillus rhamnosus are downregulated under both heat stress and oxidative stress. In this study, the influence of different nitrogen sources within the growth medium on the tolerance of L. rhamnosus to heat stress and oxidative stress was investigated. Tryptone-free MRS was found to enhance the tolerance of L. rhamnosus hsryfm 1301 to heat stress and oxidative stress during the whole growth period, and this result was universal for all L. rhamnosus species analyzed. The strongest strengthening effect occurred when the OD600 value reached 2.0, at which the survival rates under heat stress and oxidative stress increased 130-fold and 40-fold, respectively. After supplementing phenylalanine, isoleucine, glutamate, valine, histidine, or tryptophan into the tryptone-free MRS, the tolerance of L. rhamnosus to heat stress and oxidative stress exhibited a sharp drop. The spray drying survival rate of L. rhamnosus hsryfm 1301 cultured in the tryptone-free MRS rose to 75% (from 30%), and the spray dried powder also performed better in the experimentally simulated gastrointestinal digestion. These results showed that decreasing the intake of amino acids is an important mechanism for L. rhamnosus to tolerate heat stress and oxidative stress. When L. rhamnosus is cultured for spray drying, the concentration of the nitrogen source's components should be an important consideration.
期刊介绍:
The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology