{"title":"带有变量选择的多重暴露分布式滞后模型。","authors":"Joseph Antonelli, Ander Wilson, Brent A Coull","doi":"10.1093/biostatistics/kxac038","DOIUrl":null,"url":null,"abstract":"<p><p>Distributed lag models are useful in environmental epidemiology as they allow the user to investigate critical windows of exposure, defined as the time periods during which exposure to a pollutant adversely affects health outcomes. Recent studies have focused on estimating the health effects of a large number of environmental exposures, or an environmental mixture, on health outcomes. In such settings, it is important to understand which environmental exposures affect a particular outcome, while acknowledging the possibility that different exposures have different critical windows. Further, in studies of environmental mixtures, it is important to identify interactions among exposures and to account for the fact that this interaction may occur between two exposures having different critical windows. Exposure to one exposure early in time could cause an individual to be more or less susceptible to another exposure later in time. We propose a Bayesian model to estimate the temporal effects of a large number of exposures on an outcome. We use spike-and-slab priors and semiparametric distributed lag curves to identify important exposures and exposure interactions and discuss extensions with improved power to detect harmful exposures. We then apply these methods to estimate the effects of exposure to multiple air pollutants during pregnancy on birthweight from vital records in Colorado.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724118/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multiple exposure distributed lag models with variable selection.\",\"authors\":\"Joseph Antonelli, Ander Wilson, Brent A Coull\",\"doi\":\"10.1093/biostatistics/kxac038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Distributed lag models are useful in environmental epidemiology as they allow the user to investigate critical windows of exposure, defined as the time periods during which exposure to a pollutant adversely affects health outcomes. Recent studies have focused on estimating the health effects of a large number of environmental exposures, or an environmental mixture, on health outcomes. In such settings, it is important to understand which environmental exposures affect a particular outcome, while acknowledging the possibility that different exposures have different critical windows. Further, in studies of environmental mixtures, it is important to identify interactions among exposures and to account for the fact that this interaction may occur between two exposures having different critical windows. Exposure to one exposure early in time could cause an individual to be more or less susceptible to another exposure later in time. We propose a Bayesian model to estimate the temporal effects of a large number of exposures on an outcome. We use spike-and-slab priors and semiparametric distributed lag curves to identify important exposures and exposure interactions and discuss extensions with improved power to detect harmful exposures. We then apply these methods to estimate the effects of exposure to multiple air pollutants during pregnancy on birthweight from vital records in Colorado.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724118/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxac038\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxac038","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multiple exposure distributed lag models with variable selection.
Distributed lag models are useful in environmental epidemiology as they allow the user to investigate critical windows of exposure, defined as the time periods during which exposure to a pollutant adversely affects health outcomes. Recent studies have focused on estimating the health effects of a large number of environmental exposures, or an environmental mixture, on health outcomes. In such settings, it is important to understand which environmental exposures affect a particular outcome, while acknowledging the possibility that different exposures have different critical windows. Further, in studies of environmental mixtures, it is important to identify interactions among exposures and to account for the fact that this interaction may occur between two exposures having different critical windows. Exposure to one exposure early in time could cause an individual to be more or less susceptible to another exposure later in time. We propose a Bayesian model to estimate the temporal effects of a large number of exposures on an outcome. We use spike-and-slab priors and semiparametric distributed lag curves to identify important exposures and exposure interactions and discuss extensions with improved power to detect harmful exposures. We then apply these methods to estimate the effects of exposure to multiple air pollutants during pregnancy on birthweight from vital records in Colorado.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.