Yong Zhang, Ming Sheng, Xingyue Liu, Ruoyu Wang, Weihang Lin, Peng Ren, Xia Wang, Enlai Zhao, Wenchao Song
{"title":"支持混合数据探索的异构多模式医疗数据融合框架。","authors":"Yong Zhang, Ming Sheng, Xingyue Liu, Ruoyu Wang, Weihang Lin, Peng Ren, Xia Wang, Enlai Zhao, Wenchao Song","doi":"10.1007/s13755-022-00183-x","DOIUrl":null,"url":null,"abstract":"<p><p>Industry 4.0 era has witnessed that more and more high-tech and precise devices are applied into medical field to provide better services. Besides EMRs, medical data include a large amount of unstructured data such as X-rays, MRI scans, CT scans and PET scans, which is still continually increasing. These massive, heterogeneous multi-modal data bring the big challenge to finding valuable data sets for healthcare researchers and other users. The traditional data warehouses are able to integrate the data and support interactive data exploration through ETL process. However, they have high cost and are not real-time. Furthermore, they lack of the ability to deal with multi-modal data in two phases-data fusion and data exploration. In the data fusion phase, it is difficult to unify the multi-modal data under one data model. In the data exploration phase, it is challenging to explore the multi-modal data at the same time, which impedes the process of extracting the diverse information underlying multi-modal data. Therefore, in order to solve these problems, we propose a highly efficient data fusion framework supporting data exploration for heterogeneous multi-modal medical data based on data lake. This framework provides a novel and efficient method to fuse the fragmented multi-modal medical data and store their metadata in the data lake. It offers a user-friendly interface supporting hybrid graph queries to explore multi-modal data. Indexes are created to accelerate the hybrid data exploration. One prototype has been implemented and tested in a hospital, which demonstrates the effectiveness of our framework.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":" ","pages":"22"},"PeriodicalIF":3.4000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417071/pdf/","citationCount":"6","resultStr":"{\"title\":\"A heterogeneous multi-modal medical data fusion framework supporting hybrid data exploration.\",\"authors\":\"Yong Zhang, Ming Sheng, Xingyue Liu, Ruoyu Wang, Weihang Lin, Peng Ren, Xia Wang, Enlai Zhao, Wenchao Song\",\"doi\":\"10.1007/s13755-022-00183-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Industry 4.0 era has witnessed that more and more high-tech and precise devices are applied into medical field to provide better services. Besides EMRs, medical data include a large amount of unstructured data such as X-rays, MRI scans, CT scans and PET scans, which is still continually increasing. These massive, heterogeneous multi-modal data bring the big challenge to finding valuable data sets for healthcare researchers and other users. The traditional data warehouses are able to integrate the data and support interactive data exploration through ETL process. However, they have high cost and are not real-time. Furthermore, they lack of the ability to deal with multi-modal data in two phases-data fusion and data exploration. In the data fusion phase, it is difficult to unify the multi-modal data under one data model. In the data exploration phase, it is challenging to explore the multi-modal data at the same time, which impedes the process of extracting the diverse information underlying multi-modal data. Therefore, in order to solve these problems, we propose a highly efficient data fusion framework supporting data exploration for heterogeneous multi-modal medical data based on data lake. This framework provides a novel and efficient method to fuse the fragmented multi-modal medical data and store their metadata in the data lake. It offers a user-friendly interface supporting hybrid graph queries to explore multi-modal data. Indexes are created to accelerate the hybrid data exploration. One prototype has been implemented and tested in a hospital, which demonstrates the effectiveness of our framework.</p>\",\"PeriodicalId\":46312,\"journal\":{\"name\":\"Health Information Science and Systems\",\"volume\":\" \",\"pages\":\"22\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417071/pdf/\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Information Science and Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13755-022-00183-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-022-00183-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
A heterogeneous multi-modal medical data fusion framework supporting hybrid data exploration.
Industry 4.0 era has witnessed that more and more high-tech and precise devices are applied into medical field to provide better services. Besides EMRs, medical data include a large amount of unstructured data such as X-rays, MRI scans, CT scans and PET scans, which is still continually increasing. These massive, heterogeneous multi-modal data bring the big challenge to finding valuable data sets for healthcare researchers and other users. The traditional data warehouses are able to integrate the data and support interactive data exploration through ETL process. However, they have high cost and are not real-time. Furthermore, they lack of the ability to deal with multi-modal data in two phases-data fusion and data exploration. In the data fusion phase, it is difficult to unify the multi-modal data under one data model. In the data exploration phase, it is challenging to explore the multi-modal data at the same time, which impedes the process of extracting the diverse information underlying multi-modal data. Therefore, in order to solve these problems, we propose a highly efficient data fusion framework supporting data exploration for heterogeneous multi-modal medical data based on data lake. This framework provides a novel and efficient method to fuse the fragmented multi-modal medical data and store their metadata in the data lake. It offers a user-friendly interface supporting hybrid graph queries to explore multi-modal data. Indexes are created to accelerate the hybrid data exploration. One prototype has been implemented and tested in a hospital, which demonstrates the effectiveness of our framework.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.