{"title":"基于脑连通性学习的脑电信号癫痫发作自动识别。","authors":"Yanna Zhao, Mingrui Xue, Changxu Dong, Jiatong He, Dengyu Chu, Gaobo Zhang, Fangzhou Xu, Xinting Ge, Yuanjie Zheng","doi":"10.1142/S0129065722500502","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy is a neurological disorder caused by brain dysfunction, which could cause uncontrolled behavior, loss of consciousness and other hazards. Electroencephalography (EEG) is an indispensable auxiliary tool for clinical diagnosis. Great progress has been made by current seizure identification methods. However, the performance of the methods on different patients varies a lot. In order to deal with this problem, we propose an automatic seizure identification method based on brain connectivity learning. The connectivity of different brain regions is modeled by a graph. Different from the manually defined graph structure, our method can extract the optimal graph structure and EEG features in an end-to-end manner. Combined with the popular graph attention neural network (GAT), this method achieves high performance and stability on different patients from the CHB-MIT dataset. The average values of accuracy, sensitivity, specificity, F1-score and AUC of the proposed model are 98.90%, 98.33%, 98.48%, 97.72% and 98.54%, respectively. The standard deviations of the above five indicators are 0.0049, 0.0125, 0.0116 and 0.0094, respectively. Compared with the existing seizure identification methods, the stability of the proposed model is improved by 78-95%.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"32 11","pages":"2250050"},"PeriodicalIF":6.6000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Seizure Identification from EEG Signals Based on Brain Connectivity Learning.\",\"authors\":\"Yanna Zhao, Mingrui Xue, Changxu Dong, Jiatong He, Dengyu Chu, Gaobo Zhang, Fangzhou Xu, Xinting Ge, Yuanjie Zheng\",\"doi\":\"10.1142/S0129065722500502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epilepsy is a neurological disorder caused by brain dysfunction, which could cause uncontrolled behavior, loss of consciousness and other hazards. Electroencephalography (EEG) is an indispensable auxiliary tool for clinical diagnosis. Great progress has been made by current seizure identification methods. However, the performance of the methods on different patients varies a lot. In order to deal with this problem, we propose an automatic seizure identification method based on brain connectivity learning. The connectivity of different brain regions is modeled by a graph. Different from the manually defined graph structure, our method can extract the optimal graph structure and EEG features in an end-to-end manner. Combined with the popular graph attention neural network (GAT), this method achieves high performance and stability on different patients from the CHB-MIT dataset. The average values of accuracy, sensitivity, specificity, F1-score and AUC of the proposed model are 98.90%, 98.33%, 98.48%, 97.72% and 98.54%, respectively. The standard deviations of the above five indicators are 0.0049, 0.0125, 0.0116 and 0.0094, respectively. Compared with the existing seizure identification methods, the stability of the proposed model is improved by 78-95%.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":\"32 11\",\"pages\":\"2250050\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065722500502\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500502","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Automatic Seizure Identification from EEG Signals Based on Brain Connectivity Learning.
Epilepsy is a neurological disorder caused by brain dysfunction, which could cause uncontrolled behavior, loss of consciousness and other hazards. Electroencephalography (EEG) is an indispensable auxiliary tool for clinical diagnosis. Great progress has been made by current seizure identification methods. However, the performance of the methods on different patients varies a lot. In order to deal with this problem, we propose an automatic seizure identification method based on brain connectivity learning. The connectivity of different brain regions is modeled by a graph. Different from the manually defined graph structure, our method can extract the optimal graph structure and EEG features in an end-to-end manner. Combined with the popular graph attention neural network (GAT), this method achieves high performance and stability on different patients from the CHB-MIT dataset. The average values of accuracy, sensitivity, specificity, F1-score and AUC of the proposed model are 98.90%, 98.33%, 98.48%, 97.72% and 98.54%, respectively. The standard deviations of the above five indicators are 0.0049, 0.0125, 0.0116 and 0.0094, respectively. Compared with the existing seizure identification methods, the stability of the proposed model is improved by 78-95%.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.