Xiaomin Yang PhD , Vu Long Tran PhD , Hynd Remita PhD , Farah Savina B.S. , Caroline Denis B.S. , Dimitri Kereselidze B.S. , Benoit Jego B.S. , Sandrine Lacombe PhD , Erika Porcel PhD , Charles Truillet PhD
{"title":"激发放射增强剂铂纳米颗粒的PET成像所得的药代动力学","authors":"Xiaomin Yang PhD , Vu Long Tran PhD , Hynd Remita PhD , Farah Savina B.S. , Caroline Denis B.S. , Dimitri Kereselidze B.S. , Benoit Jego B.S. , Sandrine Lacombe PhD , Erika Porcel PhD , Charles Truillet PhD","doi":"10.1016/j.nano.2022.102603","DOIUrl":null,"url":null,"abstract":"<div><p>Personalized medicine approach in radiotherapy requires the delivery of precise dose to the tumor. The concept is to increase the effectiveness of radiotherapy while sparing the surrounding heathy tissue. This can be achieved by the use of high-Z metal-based nanoparticles (NPs) as radio-enhancers and PET imaging for mapping NPs distribution to guide the irradiation. In the present study, radio-enhancing platinum NPs were radiolabeled and imaged to assess their pharmacokinetics over time. PET imaging of these NPs revealed high enhanced permeation and retention effect. The maximal tumor accumulation (4.8 ± 0.8 %ID/cc) was observed at 24 h post-injection along with persistent accumulation of the NPs, especially at the tumor ring, even after several days. These properties positively suggest the potential clinical use of these NPs.</p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"46 ","pages":"Article 102603"},"PeriodicalIF":4.7000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pharmacokinetics derived from PET imaging of inspiring radio-enhancer platinum nanoparticles\",\"authors\":\"Xiaomin Yang PhD , Vu Long Tran PhD , Hynd Remita PhD , Farah Savina B.S. , Caroline Denis B.S. , Dimitri Kereselidze B.S. , Benoit Jego B.S. , Sandrine Lacombe PhD , Erika Porcel PhD , Charles Truillet PhD\",\"doi\":\"10.1016/j.nano.2022.102603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Personalized medicine approach in radiotherapy requires the delivery of precise dose to the tumor. The concept is to increase the effectiveness of radiotherapy while sparing the surrounding heathy tissue. This can be achieved by the use of high-Z metal-based nanoparticles (NPs) as radio-enhancers and PET imaging for mapping NPs distribution to guide the irradiation. In the present study, radio-enhancing platinum NPs were radiolabeled and imaged to assess their pharmacokinetics over time. PET imaging of these NPs revealed high enhanced permeation and retention effect. The maximal tumor accumulation (4.8 ± 0.8 %ID/cc) was observed at 24 h post-injection along with persistent accumulation of the NPs, especially at the tumor ring, even after several days. These properties positively suggest the potential clinical use of these NPs.</p></div>\",\"PeriodicalId\":396,\"journal\":{\"name\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"volume\":\"46 \",\"pages\":\"Article 102603\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963422000892\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963422000892","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Pharmacokinetics derived from PET imaging of inspiring radio-enhancer platinum nanoparticles
Personalized medicine approach in radiotherapy requires the delivery of precise dose to the tumor. The concept is to increase the effectiveness of radiotherapy while sparing the surrounding heathy tissue. This can be achieved by the use of high-Z metal-based nanoparticles (NPs) as radio-enhancers and PET imaging for mapping NPs distribution to guide the irradiation. In the present study, radio-enhancing platinum NPs were radiolabeled and imaged to assess their pharmacokinetics over time. PET imaging of these NPs revealed high enhanced permeation and retention effect. The maximal tumor accumulation (4.8 ± 0.8 %ID/cc) was observed at 24 h post-injection along with persistent accumulation of the NPs, especially at the tumor ring, even after several days. These properties positively suggest the potential clinical use of these NPs.
期刊介绍:
Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.