膜蛋白的结构对称性。

IF 10.4 1区 生物学 Q1 BIOPHYSICS
Lucy R Forrest
{"title":"膜蛋白的结构对称性。","authors":"Lucy R Forrest","doi":"10.1146/annurev-biophys-051013-023008","DOIUrl":null,"url":null,"abstract":"<p><p>Symmetry is a common feature among natural systems, including protein structures. A strong propensity toward symmetric architectures has long been recognized for water-soluble proteins, and this propensity has been rationalized from an evolutionary standpoint. Proteins residing in cellular membranes, however, have traditionally been less amenable to structural studies, and thus the prevalence and significance of symmetry in this important class of molecules is not as well understood. In the past two decades, researchers have made great strides in this area, and these advances have provided exciting insights into the range of architectures adopted by membrane proteins. These structural studies have revealed a similarly strong bias toward symmetric arrangements, which were often unexpected and which occurred despite the restrictions imposed by the membrane environment on the possible symmetry groups. Moreover, membrane proteins disproportionately contain internal structural repeats resulting from duplication and fusion of smaller segments. This article discusses the types and origins of symmetry in membrane proteins and the implications of symmetry for protein function. </p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":"44 ","pages":"311-37"},"PeriodicalIF":10.4000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-biophys-051013-023008","citationCount":"114","resultStr":"{\"title\":\"Structural Symmetry in Membrane Proteins.\",\"authors\":\"Lucy R Forrest\",\"doi\":\"10.1146/annurev-biophys-051013-023008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Symmetry is a common feature among natural systems, including protein structures. A strong propensity toward symmetric architectures has long been recognized for water-soluble proteins, and this propensity has been rationalized from an evolutionary standpoint. Proteins residing in cellular membranes, however, have traditionally been less amenable to structural studies, and thus the prevalence and significance of symmetry in this important class of molecules is not as well understood. In the past two decades, researchers have made great strides in this area, and these advances have provided exciting insights into the range of architectures adopted by membrane proteins. These structural studies have revealed a similarly strong bias toward symmetric arrangements, which were often unexpected and which occurred despite the restrictions imposed by the membrane environment on the possible symmetry groups. Moreover, membrane proteins disproportionately contain internal structural repeats resulting from duplication and fusion of smaller segments. This article discusses the types and origins of symmetry in membrane proteins and the implications of symmetry for protein function. </p>\",\"PeriodicalId\":50756,\"journal\":{\"name\":\"Annual Review of Biophysics\",\"volume\":\"44 \",\"pages\":\"311-37\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-biophys-051013-023008\",\"citationCount\":\"114\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biophys-051013-023008\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-051013-023008","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 114

摘要

对称性是自然系统的共同特征,包括蛋白质结构。长期以来,人们认识到水溶性蛋白质具有强烈的对称结构倾向,并且从进化的角度来看,这种倾向是合理的。然而,居住在细胞膜上的蛋白质,传统上不太适合进行结构研究,因此,对称性在这类重要分子中的普遍存在和意义还没有得到很好的理解。在过去的二十年里,研究人员在这一领域取得了巨大的进步,这些进步为膜蛋白所采用的结构范围提供了令人兴奋的见解。这些结构研究揭示了类似的对对称排列的强烈偏向,这通常是意想不到的,尽管膜环境对可能的对称群施加了限制,但这种偏向还是发生了。此外,膜蛋白不成比例地包含由较小片段的复制和融合引起的内部结构重复。本文讨论了膜蛋白中对称的类型和起源,以及对称对蛋白质功能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural Symmetry in Membrane Proteins.

Structural Symmetry in Membrane Proteins.

Structural Symmetry in Membrane Proteins.

Structural Symmetry in Membrane Proteins.

Symmetry is a common feature among natural systems, including protein structures. A strong propensity toward symmetric architectures has long been recognized for water-soluble proteins, and this propensity has been rationalized from an evolutionary standpoint. Proteins residing in cellular membranes, however, have traditionally been less amenable to structural studies, and thus the prevalence and significance of symmetry in this important class of molecules is not as well understood. In the past two decades, researchers have made great strides in this area, and these advances have provided exciting insights into the range of architectures adopted by membrane proteins. These structural studies have revealed a similarly strong bias toward symmetric arrangements, which were often unexpected and which occurred despite the restrictions imposed by the membrane environment on the possible symmetry groups. Moreover, membrane proteins disproportionately contain internal structural repeats resulting from duplication and fusion of smaller segments. This article discusses the types and origins of symmetry in membrane proteins and the implications of symmetry for protein function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Biophysics
Annual Review of Biophysics 生物-生物物理
CiteScore
21.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信