细胞膜上的力控制。

Milos Galic, Isabell Begemann, Abhiyan Viplav, Maja Matis
{"title":"细胞膜上的力控制。","authors":"Milos Galic,&nbsp;Isabell Begemann,&nbsp;Abhiyan Viplav,&nbsp;Maja Matis","doi":"10.1080/19490992.2015.1005524","DOIUrl":null,"url":null,"abstract":"<p><p>Force-regulation at cellular membranes relies on dynamic molecular platforms that integrate intra- and extracellular signals to control cell shape and function. To correctly respond to a continuously changing environment, activity of these platforms needs to be tightly controlled in space and time. Over the last few years, curvature-dependent mechano-chemical signal translation—a receptor-independent signaling mechanism where physical forces at the plasma membrane trigger nanoscale membrane deformations that are then translated into chemical signal transduction cascades—has emerged as a new signaling principle that cells use to regulate forces at the membrane. However, until recently, technical limitations have precluded studies of this force-induced curvature-dependent signaling at the physiological scale. Here, we comment on recent advancements that allow studying curvature-dependent signaling at membranes, and discuss processes where it may be involved in. Considering its general impact on cell function, a particular focus will be put on the curvature-dependence of feedback loops that control actin-based forces at cellular membranes.</p>","PeriodicalId":89329,"journal":{"name":"Bioarchitecture","volume":"4 4-5","pages":"164-8"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19490992.2015.1005524","citationCount":"9","resultStr":"{\"title\":\"Force-control at cellular membranes.\",\"authors\":\"Milos Galic,&nbsp;Isabell Begemann,&nbsp;Abhiyan Viplav,&nbsp;Maja Matis\",\"doi\":\"10.1080/19490992.2015.1005524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Force-regulation at cellular membranes relies on dynamic molecular platforms that integrate intra- and extracellular signals to control cell shape and function. To correctly respond to a continuously changing environment, activity of these platforms needs to be tightly controlled in space and time. Over the last few years, curvature-dependent mechano-chemical signal translation—a receptor-independent signaling mechanism where physical forces at the plasma membrane trigger nanoscale membrane deformations that are then translated into chemical signal transduction cascades—has emerged as a new signaling principle that cells use to regulate forces at the membrane. However, until recently, technical limitations have precluded studies of this force-induced curvature-dependent signaling at the physiological scale. Here, we comment on recent advancements that allow studying curvature-dependent signaling at membranes, and discuss processes where it may be involved in. Considering its general impact on cell function, a particular focus will be put on the curvature-dependence of feedback loops that control actin-based forces at cellular membranes.</p>\",\"PeriodicalId\":89329,\"journal\":{\"name\":\"Bioarchitecture\",\"volume\":\"4 4-5\",\"pages\":\"164-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19490992.2015.1005524\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioarchitecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19490992.2015.1005524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioarchitecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19490992.2015.1005524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

细胞膜上的力调节依赖于动态分子平台,该平台整合了细胞内和细胞外的信号来控制细胞的形状和功能。为了正确应对不断变化的环境,这些平台的活动需要在空间和时间上严格控制。在过去的几年里,曲率依赖的机械化学信号翻译——一种不依赖受体的信号机制,在这种机制中,质膜上的物理力触发纳米级膜变形,然后转化为化学信号转导级联——已经成为一种新的信号传导原理,细胞利用它来调节膜上的力。然而,直到最近,技术限制已经排除了在生理尺度上对这种力诱导的曲率依赖信号的研究。在这里,我们评论了最近的进展,允许研究曲率依赖的信号在膜上,并讨论了它可能参与的过程。考虑到它对细胞功能的一般影响,我们将特别关注控制细胞膜上基于肌动蛋白的力的反馈回路的曲率依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Force-control at cellular membranes.

Force-control at cellular membranes.

Force-control at cellular membranes.

Force-regulation at cellular membranes relies on dynamic molecular platforms that integrate intra- and extracellular signals to control cell shape and function. To correctly respond to a continuously changing environment, activity of these platforms needs to be tightly controlled in space and time. Over the last few years, curvature-dependent mechano-chemical signal translation—a receptor-independent signaling mechanism where physical forces at the plasma membrane trigger nanoscale membrane deformations that are then translated into chemical signal transduction cascades—has emerged as a new signaling principle that cells use to regulate forces at the membrane. However, until recently, technical limitations have precluded studies of this force-induced curvature-dependent signaling at the physiological scale. Here, we comment on recent advancements that allow studying curvature-dependent signaling at membranes, and discuss processes where it may be involved in. Considering its general impact on cell function, a particular focus will be put on the curvature-dependence of feedback loops that control actin-based forces at cellular membranes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信