Alexandros Katsimichas, Ioulia Karveli, George Dimopoulos, Maria Giannakourou, Petros Taoukis
{"title":"高压匀浆辅助蛋白提取小球藻动力学研究","authors":"Alexandros Katsimichas, Ioulia Karveli, George Dimopoulos, Maria Giannakourou, Petros Taoukis","doi":"10.1016/j.ifset.2023.103438","DOIUrl":null,"url":null,"abstract":"<div><p><span>Protein extraction kinetics from microalga </span><span><em>Chlorella pyrenoidosa</em></span><span> by applying High Pressure Homogenization pretreatment was studied. Untreated and treated (400–800 bar, 1 and 4 passes) aqueous microalgal suspensions were incubated at 20–40 °C for up to 24 h. A four-pass treatment at 800 bar caused maximization of carbohydrate (103 mg carbohydrates/g dry biomass immediately after treatment) and protein recovery (382.0 mg proteins/g dry biomass after extraction at 40 °C for 24 h). Protein characteristic extraction time was significantly dependent on pretreatment conditions and extraction temperature (5.16 h for untreated sample at 20 °C vs. 1.34 h for 800 bar/4 passes treated biomass at 40 °C). A combination of a two-hour ethanolic extraction at 60 °C prior to a six-hour aqueous extraction from biomass treated at 800 bar/4 passes maximized chlorophyll separation (16.3 mg chlorophylls/g dry biomass) and led to aqueous extracts of high protein content (764.7 mg proteins/g dry extract).</span></p></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"88 ","pages":"Article 103438"},"PeriodicalIF":6.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kinetics of high pressure homogenization assisted protein extraction from Chlorella pyrenoidosa\",\"authors\":\"Alexandros Katsimichas, Ioulia Karveli, George Dimopoulos, Maria Giannakourou, Petros Taoukis\",\"doi\":\"10.1016/j.ifset.2023.103438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Protein extraction kinetics from microalga </span><span><em>Chlorella pyrenoidosa</em></span><span> by applying High Pressure Homogenization pretreatment was studied. Untreated and treated (400–800 bar, 1 and 4 passes) aqueous microalgal suspensions were incubated at 20–40 °C for up to 24 h. A four-pass treatment at 800 bar caused maximization of carbohydrate (103 mg carbohydrates/g dry biomass immediately after treatment) and protein recovery (382.0 mg proteins/g dry biomass after extraction at 40 °C for 24 h). Protein characteristic extraction time was significantly dependent on pretreatment conditions and extraction temperature (5.16 h for untreated sample at 20 °C vs. 1.34 h for 800 bar/4 passes treated biomass at 40 °C). A combination of a two-hour ethanolic extraction at 60 °C prior to a six-hour aqueous extraction from biomass treated at 800 bar/4 passes maximized chlorophyll separation (16.3 mg chlorophylls/g dry biomass) and led to aqueous extracts of high protein content (764.7 mg proteins/g dry extract).</span></p></div>\",\"PeriodicalId\":329,\"journal\":{\"name\":\"Innovative Food Science & Emerging Technologies\",\"volume\":\"88 \",\"pages\":\"Article 103438\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovative Food Science & Emerging Technologies\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1466856423001728\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856423001728","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
摘要
研究了高压均质预处理从核核小球藻中提取蛋白质的动力学。未经处理和处理(400-800巴)1和4传递)水microalgal悬浮液在20 - 40°C孵化24小时。four-pass治疗在800酒吧造成最大化的碳水化合物(103毫克碳水化合物/ g干重后立即治疗)和蛋白质复苏(382.0毫克的蛋白质/ g干生物量在40°C萃取后24 h)。蛋白质特征提取时间明显依赖于预处理条件和提取温度对未经处理的样品(5.16 h 20°C和1.34 h 800酒吧/ 4在40°C下通过处理过的生物质)。在800 bar/4处理的生物质中,先在60°C下进行2小时的乙醇提取,再进行6小时的水提取,这样可以最大限度地分离叶绿素(16.3 mg叶绿素/g干生物质),并得到高蛋白质含量的水提取物(764.7 mg蛋白质/g干提取物)。
Kinetics of high pressure homogenization assisted protein extraction from Chlorella pyrenoidosa
Protein extraction kinetics from microalga Chlorella pyrenoidosa by applying High Pressure Homogenization pretreatment was studied. Untreated and treated (400–800 bar, 1 and 4 passes) aqueous microalgal suspensions were incubated at 20–40 °C for up to 24 h. A four-pass treatment at 800 bar caused maximization of carbohydrate (103 mg carbohydrates/g dry biomass immediately after treatment) and protein recovery (382.0 mg proteins/g dry biomass after extraction at 40 °C for 24 h). Protein characteristic extraction time was significantly dependent on pretreatment conditions and extraction temperature (5.16 h for untreated sample at 20 °C vs. 1.34 h for 800 bar/4 passes treated biomass at 40 °C). A combination of a two-hour ethanolic extraction at 60 °C prior to a six-hour aqueous extraction from biomass treated at 800 bar/4 passes maximized chlorophyll separation (16.3 mg chlorophylls/g dry biomass) and led to aqueous extracts of high protein content (764.7 mg proteins/g dry extract).
期刊介绍:
Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.