揭示环境介导的耐药性贡献的系统方法

IF 12.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Marc Creixell , Hyuna Kim , Farnaz Mohammadi , Shelly R. Peyton , Aaron S. Meyer
{"title":"揭示环境介导的耐药性贡献的系统方法","authors":"Marc Creixell ,&nbsp;Hyuna Kim ,&nbsp;Farnaz Mohammadi ,&nbsp;Shelly R. Peyton ,&nbsp;Aaron S. Meyer","doi":"10.1016/j.cossms.2022.101005","DOIUrl":null,"url":null,"abstract":"<div><p>Cancer drug response is heavily influenced by the extracellular matrix (ECM) environment. Despite a clear appreciation that the ECM influences cancer drug response and progression, a unified view of how, where, and when environment-mediated drug resistance contributes to cancer progression has not coalesced. Here, we survey some specific ways in which the ECM contributes to cancer resistance with a focus on how materials development can coincide with systems biology approaches to better understand and perturb this contribution. We argue that part of the reason that environment-mediated resistance remains a perplexing problem is our lack of a wholistic view of the entire range of environments and their impacts on cell behavior. We cover a series of recent experimental and computational tools that will aid exploration of ECM reactions space, and how they might be synergistically integrated.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 5","pages":"Article 101005"},"PeriodicalIF":12.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9620953/pdf/","citationCount":"1","resultStr":"{\"title\":\"Systems approaches to uncovering the contribution of environment-mediated drug resistance\",\"authors\":\"Marc Creixell ,&nbsp;Hyuna Kim ,&nbsp;Farnaz Mohammadi ,&nbsp;Shelly R. Peyton ,&nbsp;Aaron S. Meyer\",\"doi\":\"10.1016/j.cossms.2022.101005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cancer drug response is heavily influenced by the extracellular matrix (ECM) environment. Despite a clear appreciation that the ECM influences cancer drug response and progression, a unified view of how, where, and when environment-mediated drug resistance contributes to cancer progression has not coalesced. Here, we survey some specific ways in which the ECM contributes to cancer resistance with a focus on how materials development can coincide with systems biology approaches to better understand and perturb this contribution. We argue that part of the reason that environment-mediated resistance remains a perplexing problem is our lack of a wholistic view of the entire range of environments and their impacts on cell behavior. We cover a series of recent experimental and computational tools that will aid exploration of ECM reactions space, and how they might be synergistically integrated.</p></div>\",\"PeriodicalId\":295,\"journal\":{\"name\":\"Current Opinion in Solid State & Materials Science\",\"volume\":\"26 5\",\"pages\":\"Article 101005\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9620953/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Solid State & Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359028622000250\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028622000250","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

肿瘤药物反应很大程度上受细胞外基质(ECM)环境的影响。尽管人们清楚地认识到ECM影响癌症药物反应和进展,但关于环境介导的耐药如何、在何处以及何时促进癌症进展的统一观点尚未形成。在这里,我们调查了ECM有助于抗癌的一些具体方式,重点是材料开发如何与系统生物学方法相结合,以更好地理解和干扰这种贡献。我们认为,环境介导的抗性仍然是一个令人困惑的问题的部分原因是我们缺乏对整个环境范围及其对细胞行为的影响的整体看法。我们介绍了一系列最新的实验和计算工具,这些工具将有助于探索ECM反应空间,以及它们如何协同集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systems approaches to uncovering the contribution of environment-mediated drug resistance

Cancer drug response is heavily influenced by the extracellular matrix (ECM) environment. Despite a clear appreciation that the ECM influences cancer drug response and progression, a unified view of how, where, and when environment-mediated drug resistance contributes to cancer progression has not coalesced. Here, we survey some specific ways in which the ECM contributes to cancer resistance with a focus on how materials development can coincide with systems biology approaches to better understand and perturb this contribution. We argue that part of the reason that environment-mediated resistance remains a perplexing problem is our lack of a wholistic view of the entire range of environments and their impacts on cell behavior. We cover a series of recent experimental and computational tools that will aid exploration of ECM reactions space, and how they might be synergistically integrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Solid State & Materials Science
Current Opinion in Solid State & Materials Science 工程技术-材料科学:综合
CiteScore
21.10
自引率
3.60%
发文量
41
审稿时长
47 days
期刊介绍: Title: Current Opinion in Solid State & Materials Science Journal Overview: Aims to provide a snapshot of the latest research and advances in materials science Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research Promotes cross-fertilization of ideas across an increasingly interdisciplinary field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信