[11 -丝状真菌对6 -氟-16 -甲基-脱氧皮质酮21-醋酸酯的羟基化]。

V V Kollerov, V V Fokina, G V Sukhodolskaya, A A Shutov, M V Donova
{"title":"[11 -丝状真菌对6 -氟-16 -甲基-脱氧皮质酮21-醋酸酯的羟基化]。","authors":"V V Kollerov,&nbsp;V V Fokina,&nbsp;G V Sukhodolskaya,&nbsp;A A Shutov,&nbsp;M V Donova","doi":"10.7868/s0555109915020105","DOIUrl":null,"url":null,"abstract":"<p><p>Selected filamentous fungi--98 strains of 31 genera--were screened for the ability to catalyze 11beta-hydroxylation of 6alpha-fluoro-16alpha-methyl-deoxycorticosterone 21-acetate (FM-DCA). It was established that representatives of the genera Gongronella, Scopulariopsis, Epicoccum, and Curvularia have the ability to activate 11beta-hydroxylase steroids. The strains of Curvularia lunata VKM F-644 and Gongronella butleri VKM F-1033 expressed maximal activity and formed 6lpha-fluoro-16alpha-methyl-corticosterone as a major bioconversion product from FM-DCA. The structures of the major products and intermediates of the bioconversion were confirmed by TLC, H PLC, MS and 1H NMR analyses. Different pathways of 6alpha-fluoro-16alpha-methyl-corticosterone formation by C. lunata and G. butleri strains were proposed based on intermediate identification. The constitutive character and membrane-binding localization were evidence of a 11beta-hydroxylating system in G. butleri, while an inducible character and microsomal localization was confirmed for 11beta-hydroxylase of C. lunata. Under optimized conditions, the molar yield of 6alpha-fluoro-16alpha-methyl-corticosterone reached 65% at a FM-DCA substrate loading of 6 g/L.</p>","PeriodicalId":20415,"journal":{"name":"Prikladnaia biokhimiia i mikrobiologiia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[11beta-Hydroxylation of 6alpha-Fluoro-16alpha-Methyl-Deoxycorticosterone 21-Acetate by filamentous fungi].\",\"authors\":\"V V Kollerov,&nbsp;V V Fokina,&nbsp;G V Sukhodolskaya,&nbsp;A A Shutov,&nbsp;M V Donova\",\"doi\":\"10.7868/s0555109915020105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Selected filamentous fungi--98 strains of 31 genera--were screened for the ability to catalyze 11beta-hydroxylation of 6alpha-fluoro-16alpha-methyl-deoxycorticosterone 21-acetate (FM-DCA). It was established that representatives of the genera Gongronella, Scopulariopsis, Epicoccum, and Curvularia have the ability to activate 11beta-hydroxylase steroids. The strains of Curvularia lunata VKM F-644 and Gongronella butleri VKM F-1033 expressed maximal activity and formed 6lpha-fluoro-16alpha-methyl-corticosterone as a major bioconversion product from FM-DCA. The structures of the major products and intermediates of the bioconversion were confirmed by TLC, H PLC, MS and 1H NMR analyses. Different pathways of 6alpha-fluoro-16alpha-methyl-corticosterone formation by C. lunata and G. butleri strains were proposed based on intermediate identification. The constitutive character and membrane-binding localization were evidence of a 11beta-hydroxylating system in G. butleri, while an inducible character and microsomal localization was confirmed for 11beta-hydroxylase of C. lunata. Under optimized conditions, the molar yield of 6alpha-fluoro-16alpha-methyl-corticosterone reached 65% at a FM-DCA substrate loading of 6 g/L.</p>\",\"PeriodicalId\":20415,\"journal\":{\"name\":\"Prikladnaia biokhimiia i mikrobiologiia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prikladnaia biokhimiia i mikrobiologiia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7868/s0555109915020105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prikladnaia biokhimiia i mikrobiologiia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7868/s0555109915020105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

筛选了31属的98株丝状真菌,对6 α -氟-16 α -甲基-脱氧皮质酮21-醋酸酯(FM-DCA)的11 -羟基化进行了催化。研究证实,Gongronella属、Scopulariopsis属、Epicoccum属和Curvularia属的代表植物具有激活11β -羟化酶类固醇的能力。月曲菌VKM F-644和白氏贡罗纳菌VKM F-1033表现出最大的活性,并形成6α -氟-16 α -甲基皮质酮作为FM-DCA的主要生物转化产物。通过薄层色谱(TLC)、高效液相色谱(PLC)、质谱(MS)和核磁共振(1H NMR)分析,确定了生物转化的主要产物和中间体的结构。在中间鉴定的基础上,提出了C. lunata和G. butleri菌株形成6 - α -氟-16 - α -甲基皮质酮的不同途径。11 - β -羟化酶的组成特征和膜结合定位证明了布氏肉鸡中存在一个11 - β -羟化酶系统,而月牙草的11 - β -羟化酶具有诱导性和微体定位。在优化条件下,6 -氟-16 -甲基皮质酮在6 g/L的FM-DCA底物负载下的摩尔产率达到65%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[11beta-Hydroxylation of 6alpha-Fluoro-16alpha-Methyl-Deoxycorticosterone 21-Acetate by filamentous fungi].

Selected filamentous fungi--98 strains of 31 genera--were screened for the ability to catalyze 11beta-hydroxylation of 6alpha-fluoro-16alpha-methyl-deoxycorticosterone 21-acetate (FM-DCA). It was established that representatives of the genera Gongronella, Scopulariopsis, Epicoccum, and Curvularia have the ability to activate 11beta-hydroxylase steroids. The strains of Curvularia lunata VKM F-644 and Gongronella butleri VKM F-1033 expressed maximal activity and formed 6lpha-fluoro-16alpha-methyl-corticosterone as a major bioconversion product from FM-DCA. The structures of the major products and intermediates of the bioconversion were confirmed by TLC, H PLC, MS and 1H NMR analyses. Different pathways of 6alpha-fluoro-16alpha-methyl-corticosterone formation by C. lunata and G. butleri strains were proposed based on intermediate identification. The constitutive character and membrane-binding localization were evidence of a 11beta-hydroxylating system in G. butleri, while an inducible character and microsomal localization was confirmed for 11beta-hydroxylase of C. lunata. Under optimized conditions, the molar yield of 6alpha-fluoro-16alpha-methyl-corticosterone reached 65% at a FM-DCA substrate loading of 6 g/L.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信