Keerti, Anuradha Gupta, Vinod Kumar, Ashutosh Dubey, A K Verma
{"title":"海藻酸盐凝胶珠固定化耐热β-葡萄糖苷酶对甘蔗汁的动力学表征及影响。","authors":"Keerti, Anuradha Gupta, Vinod Kumar, Ashutosh Dubey, A K Verma","doi":"10.1155/2014/178498","DOIUrl":null,"url":null,"abstract":"<p><p>A thermostable β-glucosidase was effectively immobilized on alginate by the method of gel entrapment. After optimization of immobilized conditions, recovered enzyme activity was 60%. Optimum pH, temperature, kinetic parameters, thermal and pH stability, reusability, and storage stability were investigated. The K m and V max for immobilized β-glucosidase were estimated to be 5.0 mM and 0.64 U/ml, respectively. When comparing, free and immobilized enzyme, change was observed in optimum pH and temperature from 5.0 to 6.0 and 60°C to 80°C, respectively. Immobilized enzyme showed an increase in pH stability over the studied pH range (3.0-10.0) and stability at temperature up to 80°C. The storage stability and reusability of the immobilized β-glucosidase were improved significantly, with 12.09% activity retention at 30°C after being stored for 25 d and 17.85% residual activity after being repeatedly used for 4 times. The effect of both free and immobilized β-glucosidase enzyme on physicochemical properties of sugarcane juice was also analyzed. </p>","PeriodicalId":90189,"journal":{"name":"ISRN biochemistry","volume":"2014 ","pages":"178498"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/178498","citationCount":"83","resultStr":"{\"title\":\"Kinetic Characterization and Effect of Immobilized Thermostable β-Glucosidase in Alginate Gel Beads on Sugarcane Juice.\",\"authors\":\"Keerti, Anuradha Gupta, Vinod Kumar, Ashutosh Dubey, A K Verma\",\"doi\":\"10.1155/2014/178498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A thermostable β-glucosidase was effectively immobilized on alginate by the method of gel entrapment. After optimization of immobilized conditions, recovered enzyme activity was 60%. Optimum pH, temperature, kinetic parameters, thermal and pH stability, reusability, and storage stability were investigated. The K m and V max for immobilized β-glucosidase were estimated to be 5.0 mM and 0.64 U/ml, respectively. When comparing, free and immobilized enzyme, change was observed in optimum pH and temperature from 5.0 to 6.0 and 60°C to 80°C, respectively. Immobilized enzyme showed an increase in pH stability over the studied pH range (3.0-10.0) and stability at temperature up to 80°C. The storage stability and reusability of the immobilized β-glucosidase were improved significantly, with 12.09% activity retention at 30°C after being stored for 25 d and 17.85% residual activity after being repeatedly used for 4 times. The effect of both free and immobilized β-glucosidase enzyme on physicochemical properties of sugarcane juice was also analyzed. </p>\",\"PeriodicalId\":90189,\"journal\":{\"name\":\"ISRN biochemistry\",\"volume\":\"2014 \",\"pages\":\"178498\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2014/178498\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISRN biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/178498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/178498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Kinetic Characterization and Effect of Immobilized Thermostable β-Glucosidase in Alginate Gel Beads on Sugarcane Juice.
A thermostable β-glucosidase was effectively immobilized on alginate by the method of gel entrapment. After optimization of immobilized conditions, recovered enzyme activity was 60%. Optimum pH, temperature, kinetic parameters, thermal and pH stability, reusability, and storage stability were investigated. The K m and V max for immobilized β-glucosidase were estimated to be 5.0 mM and 0.64 U/ml, respectively. When comparing, free and immobilized enzyme, change was observed in optimum pH and temperature from 5.0 to 6.0 and 60°C to 80°C, respectively. Immobilized enzyme showed an increase in pH stability over the studied pH range (3.0-10.0) and stability at temperature up to 80°C. The storage stability and reusability of the immobilized β-glucosidase were improved significantly, with 12.09% activity retention at 30°C after being stored for 25 d and 17.85% residual activity after being repeatedly used for 4 times. The effect of both free and immobilized β-glucosidase enzyme on physicochemical properties of sugarcane juice was also analyzed.