{"title":"用于量化和可视化配准不确定性的空间置信区域。","authors":"Takanori Watanabe, Clayton Scott","doi":"10.1007/978-3-642-31340-0_13","DOIUrl":null,"url":null,"abstract":"<p><p>For image registration to be applicable in a clinical setting, it is important to know the degree of uncertainty in the returned point-correspondences. In this paper, we propose a data-driven method that allows one to visualize and quantify the registration uncertainty through spatially adaptive confidence regions. The method applies to various parametric deformation models and to any choice of the similarity criterion. We adopt the B-spline model and the negative sum of squared differences for concreteness. At the heart of the proposed method is a novel shrinkage-based estimate of the distribution on deformation parameters. We present some empirical evaluations of the method in 2-D using images of the lung and liver, and the method generalizes to 3-D.</p>","PeriodicalId":90799,"journal":{"name":"Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )","volume":"7359 ","pages":"120-130"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-642-31340-0_13","citationCount":"9","resultStr":"{\"title\":\"Spatial Confidence Regions for Quantifying and Visualizing Registration Uncertainty.\",\"authors\":\"Takanori Watanabe, Clayton Scott\",\"doi\":\"10.1007/978-3-642-31340-0_13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For image registration to be applicable in a clinical setting, it is important to know the degree of uncertainty in the returned point-correspondences. In this paper, we propose a data-driven method that allows one to visualize and quantify the registration uncertainty through spatially adaptive confidence regions. The method applies to various parametric deformation models and to any choice of the similarity criterion. We adopt the B-spline model and the negative sum of squared differences for concreteness. At the heart of the proposed method is a novel shrinkage-based estimate of the distribution on deformation parameters. We present some empirical evaluations of the method in 2-D using images of the lung and liver, and the method generalizes to 3-D.</p>\",\"PeriodicalId\":90799,\"journal\":{\"name\":\"Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )\",\"volume\":\"7359 \",\"pages\":\"120-130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-642-31340-0_13\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-642-31340-0_13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-31340-0_13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatial Confidence Regions for Quantifying and Visualizing Registration Uncertainty.
For image registration to be applicable in a clinical setting, it is important to know the degree of uncertainty in the returned point-correspondences. In this paper, we propose a data-driven method that allows one to visualize and quantify the registration uncertainty through spatially adaptive confidence regions. The method applies to various parametric deformation models and to any choice of the similarity criterion. We adopt the B-spline model and the negative sum of squared differences for concreteness. At the heart of the proposed method is a novel shrinkage-based estimate of the distribution on deformation parameters. We present some empirical evaluations of the method in 2-D using images of the lung and liver, and the method generalizes to 3-D.