v1中方向映射的单色性意味着超列大小的最小方差。

IF 2.3 4区 医学 Q1 Neuroscience
Journal of Mathematical Neuroscience Pub Date : 2015-04-08 eCollection Date: 2015-01-01 DOI:10.1186/s13408-015-0022-9
Alexandre Afgoustidis
{"title":"v1中方向映射的单色性意味着超列大小的最小方差。","authors":"Alexandre Afgoustidis","doi":"10.1186/s13408-015-0022-9","DOIUrl":null,"url":null,"abstract":"<p><p>In the primary visual cortex of many mammals, the processing of sensory information involves recognizing stimuli orientations. The repartition of preferred orientations of neurons in some areas is remarkable: a repetitive, non-periodic, layout. This repetitive pattern is understood to be fundamental for basic non-local aspects of vision, like the perception of contours, but important questions remain about its development and function. We focus here on Gaussian Random Fields, which provide a good description of the initial stage of orientation map development and, in spite of shortcomings we will recall, a computable framework for discussing general principles underlying the geometry of mature maps. We discuss the relationship between the notion of column spacing and the structure of correlation spectra; we prove formulas for the mean value and variance of column spacing, and we use numerical analysis of exact analytic formulae to study the variance. Referring to studies by Wolf, Geisel, Kaschube, Schnabel, and coworkers, we also show that spectral thinness is not an essential ingredient to obtain a pinwheel density of π, whereas it appears as a signature of Euclidean symmetry. The minimum variance property associated to thin spectra could be useful for information processing, provide optimal modularity for V1 hypercolumns, and be a first step toward a mathematical definition of hypercolumns. A measurement of this property in real maps is in principle possible, and comparison with the results in our paper could help establish the role of our minimum variance hypothesis in the development process. </p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":"5 ","pages":"10"},"PeriodicalIF":2.3000,"publicationDate":"2015-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13408-015-0022-9","citationCount":"6","resultStr":"{\"title\":\"Monochromaticity of orientation maps in v1 implies minimum variance for hypercolumn size.\",\"authors\":\"Alexandre Afgoustidis\",\"doi\":\"10.1186/s13408-015-0022-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the primary visual cortex of many mammals, the processing of sensory information involves recognizing stimuli orientations. The repartition of preferred orientations of neurons in some areas is remarkable: a repetitive, non-periodic, layout. This repetitive pattern is understood to be fundamental for basic non-local aspects of vision, like the perception of contours, but important questions remain about its development and function. We focus here on Gaussian Random Fields, which provide a good description of the initial stage of orientation map development and, in spite of shortcomings we will recall, a computable framework for discussing general principles underlying the geometry of mature maps. We discuss the relationship between the notion of column spacing and the structure of correlation spectra; we prove formulas for the mean value and variance of column spacing, and we use numerical analysis of exact analytic formulae to study the variance. Referring to studies by Wolf, Geisel, Kaschube, Schnabel, and coworkers, we also show that spectral thinness is not an essential ingredient to obtain a pinwheel density of π, whereas it appears as a signature of Euclidean symmetry. The minimum variance property associated to thin spectra could be useful for information processing, provide optimal modularity for V1 hypercolumns, and be a first step toward a mathematical definition of hypercolumns. A measurement of this property in real maps is in principle possible, and comparison with the results in our paper could help establish the role of our minimum variance hypothesis in the development process. </p>\",\"PeriodicalId\":54271,\"journal\":{\"name\":\"Journal of Mathematical Neuroscience\",\"volume\":\"5 \",\"pages\":\"10\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2015-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13408-015-0022-9\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13408-015-0022-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13408-015-0022-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 6

摘要

在许多哺乳动物的初级视觉皮层中,感觉信息的处理包括识别刺激方向。在某些区域,神经元偏好方向的重新分配是显著的:一种重复的、非周期性的布局。这种重复的模式被认为是基本的非局部视觉方面的基础,比如对轮廓的感知,但关于其发展和功能的重要问题仍然存在。我们在这里关注高斯随机场,它很好地描述了方向图开发的初始阶段,尽管我们会回忆起一些缺点,但它是一个可计算的框架,用于讨论成熟地图几何基础的一般原理。讨论了列间距的概念与相关谱结构之间的关系;证明了柱间距均值和方差的计算公式,并用精确解析公式对方差进行了数值分析。参考Wolf, Geisel, Kaschube, Schnabel和同事的研究,我们还表明,光谱薄度并不是获得π的风车密度的必要因素,而它似乎是欧几里得对称的标志。与薄光谱相关的最小方差特性可用于信息处理,为V1超列提供最佳模块化,并为超列的数学定义迈出了第一步。在实际地图中测量这一属性原则上是可能的,与我们论文中的结果进行比较可以帮助确定我们的最小方差假设在开发过程中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Monochromaticity of orientation maps in v1 implies minimum variance for hypercolumn size.

Monochromaticity of orientation maps in v1 implies minimum variance for hypercolumn size.

Monochromaticity of orientation maps in v1 implies minimum variance for hypercolumn size.

Monochromaticity of orientation maps in v1 implies minimum variance for hypercolumn size.

In the primary visual cortex of many mammals, the processing of sensory information involves recognizing stimuli orientations. The repartition of preferred orientations of neurons in some areas is remarkable: a repetitive, non-periodic, layout. This repetitive pattern is understood to be fundamental for basic non-local aspects of vision, like the perception of contours, but important questions remain about its development and function. We focus here on Gaussian Random Fields, which provide a good description of the initial stage of orientation map development and, in spite of shortcomings we will recall, a computable framework for discussing general principles underlying the geometry of mature maps. We discuss the relationship between the notion of column spacing and the structure of correlation spectra; we prove formulas for the mean value and variance of column spacing, and we use numerical analysis of exact analytic formulae to study the variance. Referring to studies by Wolf, Geisel, Kaschube, Schnabel, and coworkers, we also show that spectral thinness is not an essential ingredient to obtain a pinwheel density of π, whereas it appears as a signature of Euclidean symmetry. The minimum variance property associated to thin spectra could be useful for information processing, provide optimal modularity for V1 hypercolumns, and be a first step toward a mathematical definition of hypercolumns. A measurement of this property in real maps is in principle possible, and comparison with the results in our paper could help establish the role of our minimum variance hypothesis in the development process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Neuroscience
Journal of Mathematical Neuroscience Neuroscience-Neuroscience (miscellaneous)
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions. It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged. Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信