{"title":"[适应信号模拟方法和退出声源后听觉后效的不对称性和空间特异性]。","authors":"E S Malinina","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The spatial specificity of auditory approaching and withdrawing aftereffects was investigated in an anechoic chamber. The adapting and testing stimuli were presented from loudspeakers located in front of the subject at the distance of 1.1 m (near) and 4.5 m (far) from the listener's head. Approach and withdrawal of stimuli were simulated by increasing or decreasing the amplitude of the wide-noise impulse sequence. The listeners were required to determine the movement direction of test stimulus following each 5-s adaptation period. The listeners' \"withdrawal\" responses were used for psychometric functions plotting and for quantitative assessment of auditory aftereffect. The data summarized for all 8 participants indicated that the asymmetry of approaching and withdrawing aftereffects depended on spatial localization of adaptor and test. The asymmetry of aftereffects was largest when adaptor and test were presented from the same loudspeaker (either near or far). Adaptation to the approach induced a directionally dependent displacement of the psychometric functions relative to control condition without adaptation and adaptation to the withdrawal was not. The magnitude of approaching aftereffect was greater when adaptor and test were located in near spatial domain than when they came from far domain. When adaptor and test were presented from the distinct loudspeakers, magnitude approaching aftereffect was decreasing in comparison to the same spatial localization, but after adaptation to withdrawal it was increasing. As a result, the directionally dependent displacements of the psychometric functions relative to control condition were observed after adaptation as to approach and to withdrawal. The discrepancy of the psychometric functions received after adaptation to approach and to withdrawal at near and far spatial domains was greater under the same localization of adaptor and test in comparison to their distinct localization. We assume that the peculiarities of approaching and withdrawing aftereffects observed reflect their spatial specificity. It is possible that spatial peculiarities of approaching and withdrawing aftereffects can be associated with specialized mechanisms for analysis of motion at the different distance from subject.</p>","PeriodicalId":24017,"journal":{"name":"Zhurnal evoliutsionnoi biokhimii i fiziologii","volume":"50 5","pages":"369-80"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Asymmetry and spatial specificity of auditory aftereffects following adaptation to signals simulating approach and withdrawal of sound sources].\",\"authors\":\"E S Malinina\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spatial specificity of auditory approaching and withdrawing aftereffects was investigated in an anechoic chamber. The adapting and testing stimuli were presented from loudspeakers located in front of the subject at the distance of 1.1 m (near) and 4.5 m (far) from the listener's head. Approach and withdrawal of stimuli were simulated by increasing or decreasing the amplitude of the wide-noise impulse sequence. The listeners were required to determine the movement direction of test stimulus following each 5-s adaptation period. The listeners' \\\"withdrawal\\\" responses were used for psychometric functions plotting and for quantitative assessment of auditory aftereffect. The data summarized for all 8 participants indicated that the asymmetry of approaching and withdrawing aftereffects depended on spatial localization of adaptor and test. The asymmetry of aftereffects was largest when adaptor and test were presented from the same loudspeaker (either near or far). Adaptation to the approach induced a directionally dependent displacement of the psychometric functions relative to control condition without adaptation and adaptation to the withdrawal was not. The magnitude of approaching aftereffect was greater when adaptor and test were located in near spatial domain than when they came from far domain. When adaptor and test were presented from the distinct loudspeakers, magnitude approaching aftereffect was decreasing in comparison to the same spatial localization, but after adaptation to withdrawal it was increasing. As a result, the directionally dependent displacements of the psychometric functions relative to control condition were observed after adaptation as to approach and to withdrawal. The discrepancy of the psychometric functions received after adaptation to approach and to withdrawal at near and far spatial domains was greater under the same localization of adaptor and test in comparison to their distinct localization. We assume that the peculiarities of approaching and withdrawing aftereffects observed reflect their spatial specificity. It is possible that spatial peculiarities of approaching and withdrawing aftereffects can be associated with specialized mechanisms for analysis of motion at the different distance from subject.</p>\",\"PeriodicalId\":24017,\"journal\":{\"name\":\"Zhurnal evoliutsionnoi biokhimii i fiziologii\",\"volume\":\"50 5\",\"pages\":\"369-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhurnal evoliutsionnoi biokhimii i fiziologii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal evoliutsionnoi biokhimii i fiziologii","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Asymmetry and spatial specificity of auditory aftereffects following adaptation to signals simulating approach and withdrawal of sound sources].
The spatial specificity of auditory approaching and withdrawing aftereffects was investigated in an anechoic chamber. The adapting and testing stimuli were presented from loudspeakers located in front of the subject at the distance of 1.1 m (near) and 4.5 m (far) from the listener's head. Approach and withdrawal of stimuli were simulated by increasing or decreasing the amplitude of the wide-noise impulse sequence. The listeners were required to determine the movement direction of test stimulus following each 5-s adaptation period. The listeners' "withdrawal" responses were used for psychometric functions plotting and for quantitative assessment of auditory aftereffect. The data summarized for all 8 participants indicated that the asymmetry of approaching and withdrawing aftereffects depended on spatial localization of adaptor and test. The asymmetry of aftereffects was largest when adaptor and test were presented from the same loudspeaker (either near or far). Adaptation to the approach induced a directionally dependent displacement of the psychometric functions relative to control condition without adaptation and adaptation to the withdrawal was not. The magnitude of approaching aftereffect was greater when adaptor and test were located in near spatial domain than when they came from far domain. When adaptor and test were presented from the distinct loudspeakers, magnitude approaching aftereffect was decreasing in comparison to the same spatial localization, but after adaptation to withdrawal it was increasing. As a result, the directionally dependent displacements of the psychometric functions relative to control condition were observed after adaptation as to approach and to withdrawal. The discrepancy of the psychometric functions received after adaptation to approach and to withdrawal at near and far spatial domains was greater under the same localization of adaptor and test in comparison to their distinct localization. We assume that the peculiarities of approaching and withdrawing aftereffects observed reflect their spatial specificity. It is possible that spatial peculiarities of approaching and withdrawing aftereffects can be associated with specialized mechanisms for analysis of motion at the different distance from subject.