乳腺癌患者的个体化生存和治疗反应预测:磷酸化- egfr和磷酸化- her2 /neu蛋白的参与

Lan Guo, Jame Abraham, Daniel C Flynn, Vincent Castranova, Xianglin Shi, Yong Qian
{"title":"乳腺癌患者的个体化生存和治疗反应预测:磷酸化- egfr和磷酸化- her2 /neu蛋白的参与","authors":"Lan Guo,&nbsp;Jame Abraham,&nbsp;Daniel C Flynn,&nbsp;Vincent Castranova,&nbsp;Xianglin Shi,&nbsp;Yong Qian","doi":"10.2174/1874189400802010018","DOIUrl":null,"url":null,"abstract":"<p><p>Our robust prediction system for individual breast cancer patients combines three well-known machine-learning classifiers to provide stable and accurate clinical outcome prediction (<i>N</i>=269). The average performance of the selected classifiers is used as the evaluation criterion in breast cancer outcome predictions. A profile (incorporating histology, lymph node status, tumor grade, tumor stage, ER, PR, Her2/neu, patient's age and smoking status) generated over 95% accuracy in individualized disease-free survival and treatment response predictions. Furthermore, our analysis demonstrated that the measurement of phospho-EGFR and phospho-Her2/neu is more powerful in breast cancer survival prediction than that of total EGFR and total Her2/neu (<i>p</i> < 0.05). The incorporation of hormone receptor status, Her2/neu, patient's age and smoking status into the traditional pathologic markers creates a powerful standard to perform individualized survival and treatment outcome predictions for breast cancer patients.</p>","PeriodicalId":87833,"journal":{"name":"The open clinical cancer journal","volume":"2 ","pages":"18-31"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282131/pdf/nihms650818.pdf","citationCount":"0","resultStr":"{\"title\":\"Individualized Survival and Treatment Response Predictions in Breast Cancer Patients: Involvements of Phospho-EGFR and Phospho-Her2/neu Proteins.\",\"authors\":\"Lan Guo,&nbsp;Jame Abraham,&nbsp;Daniel C Flynn,&nbsp;Vincent Castranova,&nbsp;Xianglin Shi,&nbsp;Yong Qian\",\"doi\":\"10.2174/1874189400802010018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our robust prediction system for individual breast cancer patients combines three well-known machine-learning classifiers to provide stable and accurate clinical outcome prediction (<i>N</i>=269). The average performance of the selected classifiers is used as the evaluation criterion in breast cancer outcome predictions. A profile (incorporating histology, lymph node status, tumor grade, tumor stage, ER, PR, Her2/neu, patient's age and smoking status) generated over 95% accuracy in individualized disease-free survival and treatment response predictions. Furthermore, our analysis demonstrated that the measurement of phospho-EGFR and phospho-Her2/neu is more powerful in breast cancer survival prediction than that of total EGFR and total Her2/neu (<i>p</i> < 0.05). The incorporation of hormone receptor status, Her2/neu, patient's age and smoking status into the traditional pathologic markers creates a powerful standard to perform individualized survival and treatment outcome predictions for breast cancer patients.</p>\",\"PeriodicalId\":87833,\"journal\":{\"name\":\"The open clinical cancer journal\",\"volume\":\"2 \",\"pages\":\"18-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282131/pdf/nihms650818.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The open clinical cancer journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874189400802010018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The open clinical cancer journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874189400802010018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们针对个体乳腺癌患者的稳健预测系统结合了三种知名的机器学习分类器,提供稳定准确的临床结果预测(N=269)。所选分类器的平均性能被用作乳腺癌预后预测的评估标准。一项资料(包括组织学、淋巴结状态、肿瘤分级、肿瘤分期、ER、PR、Her2/neu、患者年龄和吸烟状况)在个体化无病生存和治疗反应预测中产生了95%以上的准确性。此外,我们的分析表明,与总EGFR和总Her2/neu相比,测定phospho-EGFR和phospho-Her2/neu在预测乳腺癌生存方面更有效(p < 0.05)。将激素受体状态、Her2/neu、患者年龄和吸烟状况纳入传统病理标志物,为乳腺癌患者的个体化生存和治疗结果预测创造了强有力的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Individualized Survival and Treatment Response Predictions in Breast Cancer Patients: Involvements of Phospho-EGFR and Phospho-Her2/neu Proteins.

Our robust prediction system for individual breast cancer patients combines three well-known machine-learning classifiers to provide stable and accurate clinical outcome prediction (N=269). The average performance of the selected classifiers is used as the evaluation criterion in breast cancer outcome predictions. A profile (incorporating histology, lymph node status, tumor grade, tumor stage, ER, PR, Her2/neu, patient's age and smoking status) generated over 95% accuracy in individualized disease-free survival and treatment response predictions. Furthermore, our analysis demonstrated that the measurement of phospho-EGFR and phospho-Her2/neu is more powerful in breast cancer survival prediction than that of total EGFR and total Her2/neu (p < 0.05). The incorporation of hormone receptor status, Her2/neu, patient's age and smoking status into the traditional pathologic markers creates a powerful standard to perform individualized survival and treatment outcome predictions for breast cancer patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信