gangetica在热、冷、盐、淹水和UV-B胁迫下的差异光合反应

IF 3.261
Upma Bhatt, Shubhangani Sharma, Vineet Soni
{"title":"gangetica在热、冷、盐、淹水和UV-B胁迫下的差异光合反应","authors":"Upma Bhatt,&nbsp;Shubhangani Sharma,&nbsp;Vineet Soni","doi":"10.1016/j.jpap.2022.100146","DOIUrl":null,"url":null,"abstract":"<div><p>Chlorophyll fluorescence transients are recognized as one of the most efficient methods for assessing plant photosynthetic efficiency under stressful conditions. The focus of this research was to investigate <em>R. gangetica's</em> photosynthetic performance under several abiotic stressors, including cold, heat, flooding, salinity, and UV. Chlorophyll (chl), proline, malondialdehyde (MDA) contents, specific energy fluxes (per Q<sub>A</sub>-reducing PSII reaction center) such as ABS/RC, TR<sub>0</sub>/RC, ET<sub>0</sub>/RC, DI<sub>0</sub>/RC, phenomenological fluxes, (ABS/CSm, TR/CSm, ETo/CSm), quantum yields (ɸPo, ɸEo, ɸDo), and performance indices (PI<sub>cs</sub> and PI<sub>abs</sub>) were analyzed. Chl content, Fm, Fv/Fm, and PIcs were recognized as highly sensitive parameters to all abiotic stresses. The results of the present study clearly show that <em>R. gangetica</em> has distinct biochemical and physiological strategies for dealing with the negative effects of various abiotic stressors. On the basis of present investigations, tolerance potential against several abiotic stimuli in <em>R. gangetica</em> can be ranked as follows Sl, UV, Ht, Fd, and Cd.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"12 ","pages":"Article 100146"},"PeriodicalIF":3.2610,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Differential photosynthetic responses in Riccia gangetica under heat, cold, salinity, submergence, and UV-B stresses\",\"authors\":\"Upma Bhatt,&nbsp;Shubhangani Sharma,&nbsp;Vineet Soni\",\"doi\":\"10.1016/j.jpap.2022.100146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chlorophyll fluorescence transients are recognized as one of the most efficient methods for assessing plant photosynthetic efficiency under stressful conditions. The focus of this research was to investigate <em>R. gangetica's</em> photosynthetic performance under several abiotic stressors, including cold, heat, flooding, salinity, and UV. Chlorophyll (chl), proline, malondialdehyde (MDA) contents, specific energy fluxes (per Q<sub>A</sub>-reducing PSII reaction center) such as ABS/RC, TR<sub>0</sub>/RC, ET<sub>0</sub>/RC, DI<sub>0</sub>/RC, phenomenological fluxes, (ABS/CSm, TR/CSm, ETo/CSm), quantum yields (ɸPo, ɸEo, ɸDo), and performance indices (PI<sub>cs</sub> and PI<sub>abs</sub>) were analyzed. Chl content, Fm, Fv/Fm, and PIcs were recognized as highly sensitive parameters to all abiotic stresses. The results of the present study clearly show that <em>R. gangetica</em> has distinct biochemical and physiological strategies for dealing with the negative effects of various abiotic stressors. On the basis of present investigations, tolerance potential against several abiotic stimuli in <em>R. gangetica</em> can be ranked as follows Sl, UV, Ht, Fd, and Cd.</p></div>\",\"PeriodicalId\":375,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology\",\"volume\":\"12 \",\"pages\":\"Article 100146\"},\"PeriodicalIF\":3.2610,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666469022000392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology","FirstCategoryId":"2","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666469022000392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

叶绿素荧光瞬态被认为是评估植物在逆境条件下光合效率的最有效方法之一。本研究的重点是研究在冷、热、淹水、盐和紫外线等几种非生物胁迫条件下gangetica的光合性能。分析了叶绿素(chl)、脯氨酸(脯氨酸)、丙二醛(MDA)含量、ABS/RC、TR0/RC、ET0/RC、DI0/RC的比能通量(每qa还原PSII反应中心)、现象通量(ABS/CSm、TR/CSm、ETo/CSm)、量子产率(h Po、h Eo、h Do)和性能指标(PIcs和PIabs)。Chl含量、Fm、Fv/Fm和PIcs被认为是对所有非生物胁迫高度敏感的参数。本研究结果清楚地表明,gangetica有不同的生化和生理策略来应对各种非生物应激源的负面影响。根据目前的研究,gangetica对几种非生物刺激的耐受性潜力可分为Sl、UV、Ht、Fd和Cd。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential photosynthetic responses in Riccia gangetica under heat, cold, salinity, submergence, and UV-B stresses

Chlorophyll fluorescence transients are recognized as one of the most efficient methods for assessing plant photosynthetic efficiency under stressful conditions. The focus of this research was to investigate R. gangetica's photosynthetic performance under several abiotic stressors, including cold, heat, flooding, salinity, and UV. Chlorophyll (chl), proline, malondialdehyde (MDA) contents, specific energy fluxes (per QA-reducing PSII reaction center) such as ABS/RC, TR0/RC, ET0/RC, DI0/RC, phenomenological fluxes, (ABS/CSm, TR/CSm, ETo/CSm), quantum yields (ɸPo, ɸEo, ɸDo), and performance indices (PIcs and PIabs) were analyzed. Chl content, Fm, Fv/Fm, and PIcs were recognized as highly sensitive parameters to all abiotic stresses. The results of the present study clearly show that R. gangetica has distinct biochemical and physiological strategies for dealing with the negative effects of various abiotic stressors. On the basis of present investigations, tolerance potential against several abiotic stimuli in R. gangetica can be ranked as follows Sl, UV, Ht, Fd, and Cd.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信