Xiangsheng An, Shujun Duan, Zhicong Jiang, Sunan Chen, Wenxuan Sun, Xiaoyan Liu, Zhonghao Sun, Yinping Li, Mingyan Yan
{"title":"绿原酸和原花青素在罗非鱼胶原蛋白自组装纤维凝胶修饰中的作用","authors":"Xiangsheng An, Shujun Duan, Zhicong Jiang, Sunan Chen, Wenxuan Sun, Xiaoyan Liu, Zhonghao Sun, Yinping Li, Mingyan Yan","doi":"10.1016/j.polymdegradstab.2022.110177","DOIUrl":null,"url":null,"abstract":"<div><p>Collagen fibrillar gels (CFG), formed by self-assembly, displayed similar structure and properties to native tissues. Plant polyphenols showed antioxidant and antibacterial capacity, etc. Previous reports stated introduction of polyphenols could improve the properties of collagen-based material. However, only a few studies were reported on the modification of CFG by polyphenols. In the study, tilapia CFG was cross-linked with chlorogenic acid (CGA) and procyanidin (PC), respectively. The cross-linking conditions were investigated. Results showed PC endowed CFG with higher cross-linking effect at saturation than CGA. ATR-FTIR and XPS displayed there were stronger hydrogen bonds between -OH groups of PC and C = O groups of CFG, but weaker in CGA, confirmed by molecular docking simulation. XRD and SEM indicated PC induced the denser network formed by thinner fibrils, not present in CGA. As a result, water absorption and retention capacity, mechanical properties and enzymatic resistance of gel were improved evidently, whereas thermal stability reduced. Additionally, polyphenol cross-linking granted better antioxidant activity to gel, PC resulting in higher DPPH and PTIO radical scavenging ratio, while CGA showing higher Fe(II) chelation ratio. It also induced better antibacterial activity against <em>Staphylococcus aureus</em>, especially PC cross-linking. The results revealed CFG cross-linked by PC showed better properties compared with CGA, making it have potential application in biomaterials.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"206 ","pages":"Article 110177"},"PeriodicalIF":6.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Role of chlorogenic acid and procyanidin in the modification of self-assembled fibrillar gel prepared from tilapia collagen\",\"authors\":\"Xiangsheng An, Shujun Duan, Zhicong Jiang, Sunan Chen, Wenxuan Sun, Xiaoyan Liu, Zhonghao Sun, Yinping Li, Mingyan Yan\",\"doi\":\"10.1016/j.polymdegradstab.2022.110177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Collagen fibrillar gels (CFG), formed by self-assembly, displayed similar structure and properties to native tissues. Plant polyphenols showed antioxidant and antibacterial capacity, etc. Previous reports stated introduction of polyphenols could improve the properties of collagen-based material. However, only a few studies were reported on the modification of CFG by polyphenols. In the study, tilapia CFG was cross-linked with chlorogenic acid (CGA) and procyanidin (PC), respectively. The cross-linking conditions were investigated. Results showed PC endowed CFG with higher cross-linking effect at saturation than CGA. ATR-FTIR and XPS displayed there were stronger hydrogen bonds between -OH groups of PC and C = O groups of CFG, but weaker in CGA, confirmed by molecular docking simulation. XRD and SEM indicated PC induced the denser network formed by thinner fibrils, not present in CGA. As a result, water absorption and retention capacity, mechanical properties and enzymatic resistance of gel were improved evidently, whereas thermal stability reduced. Additionally, polyphenol cross-linking granted better antioxidant activity to gel, PC resulting in higher DPPH and PTIO radical scavenging ratio, while CGA showing higher Fe(II) chelation ratio. It also induced better antibacterial activity against <em>Staphylococcus aureus</em>, especially PC cross-linking. The results revealed CFG cross-linked by PC showed better properties compared with CGA, making it have potential application in biomaterials.</p></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"206 \",\"pages\":\"Article 110177\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014139102200355X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014139102200355X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Role of chlorogenic acid and procyanidin in the modification of self-assembled fibrillar gel prepared from tilapia collagen
Collagen fibrillar gels (CFG), formed by self-assembly, displayed similar structure and properties to native tissues. Plant polyphenols showed antioxidant and antibacterial capacity, etc. Previous reports stated introduction of polyphenols could improve the properties of collagen-based material. However, only a few studies were reported on the modification of CFG by polyphenols. In the study, tilapia CFG was cross-linked with chlorogenic acid (CGA) and procyanidin (PC), respectively. The cross-linking conditions were investigated. Results showed PC endowed CFG with higher cross-linking effect at saturation than CGA. ATR-FTIR and XPS displayed there were stronger hydrogen bonds between -OH groups of PC and C = O groups of CFG, but weaker in CGA, confirmed by molecular docking simulation. XRD and SEM indicated PC induced the denser network formed by thinner fibrils, not present in CGA. As a result, water absorption and retention capacity, mechanical properties and enzymatic resistance of gel were improved evidently, whereas thermal stability reduced. Additionally, polyphenol cross-linking granted better antioxidant activity to gel, PC resulting in higher DPPH and PTIO radical scavenging ratio, while CGA showing higher Fe(II) chelation ratio. It also induced better antibacterial activity against Staphylococcus aureus, especially PC cross-linking. The results revealed CFG cross-linked by PC showed better properties compared with CGA, making it have potential application in biomaterials.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.