Fernando Gutierrez-Fernandez, María Pinto-Gonzalez, Oscar Gonzalez-Perez
{"title":"出生后脑室-脑室下区神经免疫相互作用。","authors":"Fernando Gutierrez-Fernandez, María Pinto-Gonzalez, Oscar Gonzalez-Perez","doi":"jsc.2014.9.1.53","DOIUrl":null,"url":null,"abstract":"<p><p>As described in this book, the interaction between the immune system and the brain can affect multiple cerebral functions, such as: neural remodeling, synaptic plasticity or neurotransmitter releasing. Neurogenic niches are not the exception, in fact, pro-inflammatory cytokines and chemokines exert a strong regulation in neural stem cells (NSCs) of the ventricular-subventricular zone (V-SVZ) by interacting with cell membrane receptors and activating multiple downstream pathways. These neuro-immune interactions modulate quiescence, cell adhesion, migration, self-renewal, differentiation, cytoskeletal rearrangement, and cell survival. In this chapter, we describe the cellular composition and cytoarchitecture of the main neurogenic niche in the adult mammalian brain: the V-SVZ. We also discuss the current evidence indicating that many immunological molecules can control the function of this neurogenic niche in the adult brain under both physiological and pathological conditions. </p>","PeriodicalId":53626,"journal":{"name":"Journal of Stem Cells","volume":"9 1","pages":"53-64"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuro-immune interactions in the postnatal ventricular-subventricular zone.\",\"authors\":\"Fernando Gutierrez-Fernandez, María Pinto-Gonzalez, Oscar Gonzalez-Perez\",\"doi\":\"jsc.2014.9.1.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As described in this book, the interaction between the immune system and the brain can affect multiple cerebral functions, such as: neural remodeling, synaptic plasticity or neurotransmitter releasing. Neurogenic niches are not the exception, in fact, pro-inflammatory cytokines and chemokines exert a strong regulation in neural stem cells (NSCs) of the ventricular-subventricular zone (V-SVZ) by interacting with cell membrane receptors and activating multiple downstream pathways. These neuro-immune interactions modulate quiescence, cell adhesion, migration, self-renewal, differentiation, cytoskeletal rearrangement, and cell survival. In this chapter, we describe the cellular composition and cytoarchitecture of the main neurogenic niche in the adult mammalian brain: the V-SVZ. We also discuss the current evidence indicating that many immunological molecules can control the function of this neurogenic niche in the adult brain under both physiological and pathological conditions. </p>\",\"PeriodicalId\":53626,\"journal\":{\"name\":\"Journal of Stem Cells\",\"volume\":\"9 1\",\"pages\":\"53-64\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stem Cells\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/jsc.2014.9.1.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stem Cells","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/jsc.2014.9.1.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Neuro-immune interactions in the postnatal ventricular-subventricular zone.
As described in this book, the interaction between the immune system and the brain can affect multiple cerebral functions, such as: neural remodeling, synaptic plasticity or neurotransmitter releasing. Neurogenic niches are not the exception, in fact, pro-inflammatory cytokines and chemokines exert a strong regulation in neural stem cells (NSCs) of the ventricular-subventricular zone (V-SVZ) by interacting with cell membrane receptors and activating multiple downstream pathways. These neuro-immune interactions modulate quiescence, cell adhesion, migration, self-renewal, differentiation, cytoskeletal rearrangement, and cell survival. In this chapter, we describe the cellular composition and cytoarchitecture of the main neurogenic niche in the adult mammalian brain: the V-SVZ. We also discuss the current evidence indicating that many immunological molecules can control the function of this neurogenic niche in the adult brain under both physiological and pathological conditions.