Akinobu Ito, Yumiko Tatsumi, Toshihiro Wajima, Rio Nakamura, Masakatsu Tsuji
{"title":"通过蒙特卡罗模拟分析了拉塔莫西夫(莫西拉斯坦)对产ESBL肠杆菌科细菌的抑菌活性。","authors":"Akinobu Ito, Yumiko Tatsumi, Toshihiro Wajima, Rio Nakamura, Masakatsu Tsuji","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Latamoxef (LMOX, Moxalactam) is one of the beta-lactam antibiotics which is stable against beta-lactamase. In this study, the antibacterial activity of LMOX was investigated, and Monte Carlo simulation was conducted to determine the appropriate dosing regimens of LMOX against extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae. The probability of target attainment (PTA) was analyzed at 40% and 70% of time above minimum inhibitory concentration (MIC) (time above MIC, T(>MIC)) for bacteriostatic and bactericidal effect respectively. All the tested regimens achieved 85% of PTA at 40% of T(>MIC) against ESBL producing Escherichia coli, and all the tested regimens except 1g q12h with 1 hour infusion achieved 85% of PTA at 40% of T(>MIC) against ESBL producing Klebsiella pneumoniae. The effective regimens to achieve 85% of PTA at 70% of T(>MIC )against E. coli were lg ql2h with 4 hours infusion, lg q8h with 1-4 hours infusion, 2g ql2h with 2-4 hours infusion, and lg q6h with 1-4 hours infusion. The effective regimens to achieve 85% of PTA at 70% of T(>MIC) against K. pneumoniae were 1g q8h with 3-4 hours infusion and 1g q6h with 1-4 hours infusion. These results of pharmacokinetics/pharmacodynamics (PK/PD) modeling showed the potent efficacy of LMOX against bacterial infections caused by ESBL producing Enterobacteriaceae.</p>","PeriodicalId":22536,"journal":{"name":"The Japanese journal of antibiotics","volume":"67 2","pages":"109-22"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potent antibacterial activities of latamoxef (moxalactam) against ESBL producing Enterobacteriaceae analyzed by Monte Carlo simulation.\",\"authors\":\"Akinobu Ito, Yumiko Tatsumi, Toshihiro Wajima, Rio Nakamura, Masakatsu Tsuji\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Latamoxef (LMOX, Moxalactam) is one of the beta-lactam antibiotics which is stable against beta-lactamase. In this study, the antibacterial activity of LMOX was investigated, and Monte Carlo simulation was conducted to determine the appropriate dosing regimens of LMOX against extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae. The probability of target attainment (PTA) was analyzed at 40% and 70% of time above minimum inhibitory concentration (MIC) (time above MIC, T(>MIC)) for bacteriostatic and bactericidal effect respectively. All the tested regimens achieved 85% of PTA at 40% of T(>MIC) against ESBL producing Escherichia coli, and all the tested regimens except 1g q12h with 1 hour infusion achieved 85% of PTA at 40% of T(>MIC) against ESBL producing Klebsiella pneumoniae. The effective regimens to achieve 85% of PTA at 70% of T(>MIC )against E. coli were lg ql2h with 4 hours infusion, lg q8h with 1-4 hours infusion, 2g ql2h with 2-4 hours infusion, and lg q6h with 1-4 hours infusion. The effective regimens to achieve 85% of PTA at 70% of T(>MIC) against K. pneumoniae were 1g q8h with 3-4 hours infusion and 1g q6h with 1-4 hours infusion. These results of pharmacokinetics/pharmacodynamics (PK/PD) modeling showed the potent efficacy of LMOX against bacterial infections caused by ESBL producing Enterobacteriaceae.</p>\",\"PeriodicalId\":22536,\"journal\":{\"name\":\"The Japanese journal of antibiotics\",\"volume\":\"67 2\",\"pages\":\"109-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Japanese journal of antibiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Japanese journal of antibiotics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Potent antibacterial activities of latamoxef (moxalactam) against ESBL producing Enterobacteriaceae analyzed by Monte Carlo simulation.
Latamoxef (LMOX, Moxalactam) is one of the beta-lactam antibiotics which is stable against beta-lactamase. In this study, the antibacterial activity of LMOX was investigated, and Monte Carlo simulation was conducted to determine the appropriate dosing regimens of LMOX against extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae. The probability of target attainment (PTA) was analyzed at 40% and 70% of time above minimum inhibitory concentration (MIC) (time above MIC, T(>MIC)) for bacteriostatic and bactericidal effect respectively. All the tested regimens achieved 85% of PTA at 40% of T(>MIC) against ESBL producing Escherichia coli, and all the tested regimens except 1g q12h with 1 hour infusion achieved 85% of PTA at 40% of T(>MIC) against ESBL producing Klebsiella pneumoniae. The effective regimens to achieve 85% of PTA at 70% of T(>MIC )against E. coli were lg ql2h with 4 hours infusion, lg q8h with 1-4 hours infusion, 2g ql2h with 2-4 hours infusion, and lg q6h with 1-4 hours infusion. The effective regimens to achieve 85% of PTA at 70% of T(>MIC) against K. pneumoniae were 1g q8h with 3-4 hours infusion and 1g q6h with 1-4 hours infusion. These results of pharmacokinetics/pharmacodynamics (PK/PD) modeling showed the potent efficacy of LMOX against bacterial infections caused by ESBL producing Enterobacteriaceae.