心脏特化传导系统中的细胞连接。

Q2 Biochemistry, Genetics and Molecular Biology
Cell Communication and Adhesion Pub Date : 2014-06-01 Epub Date: 2014-04-16 DOI:10.3109/15419061.2014.905928
Valeria Mezzano, Jason Pellman, Farah Sheikh
{"title":"心脏特化传导系统中的细胞连接。","authors":"Valeria Mezzano,&nbsp;Jason Pellman,&nbsp;Farah Sheikh","doi":"10.3109/15419061.2014.905928","DOIUrl":null,"url":null,"abstract":"<p><p>Anchoring cell junctions are integral in maintaining electro-mechanical coupling of ventricular working cardiomyocytes; however, their role in cardiomyocytes of the cardiac conduction system (CCS) remains less clear. Recent studies in genetic mouse models and humans highlight the appearance of these cell junctions alongside gap junctions in the CCS and also show that defects in these structures and their components are associated with conduction impairments in the CCS. Here we outline current evidence supporting an integral relationship between anchoring and gap junctions in the CCS. Specifically we focus on (1) molecular and ultrastructural evidence for cell-cell junctions in specialized cardiomyocytes of the CCS, (2) genetic mouse models specifically targeting cell-cell junction components in the heart which exhibit CCS conduction defects and (3) human clinical studies from patients with cell-cell junction-based diseases that exhibit CCS electrophysiological defects.</p>","PeriodicalId":55269,"journal":{"name":"Cell Communication and Adhesion","volume":"21 3","pages":"149-59"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/15419061.2014.905928","citationCount":"22","resultStr":"{\"title\":\"Cell junctions in the specialized conduction system of the heart.\",\"authors\":\"Valeria Mezzano,&nbsp;Jason Pellman,&nbsp;Farah Sheikh\",\"doi\":\"10.3109/15419061.2014.905928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anchoring cell junctions are integral in maintaining electro-mechanical coupling of ventricular working cardiomyocytes; however, their role in cardiomyocytes of the cardiac conduction system (CCS) remains less clear. Recent studies in genetic mouse models and humans highlight the appearance of these cell junctions alongside gap junctions in the CCS and also show that defects in these structures and their components are associated with conduction impairments in the CCS. Here we outline current evidence supporting an integral relationship between anchoring and gap junctions in the CCS. Specifically we focus on (1) molecular and ultrastructural evidence for cell-cell junctions in specialized cardiomyocytes of the CCS, (2) genetic mouse models specifically targeting cell-cell junction components in the heart which exhibit CCS conduction defects and (3) human clinical studies from patients with cell-cell junction-based diseases that exhibit CCS electrophysiological defects.</p>\",\"PeriodicalId\":55269,\"journal\":{\"name\":\"Cell Communication and Adhesion\",\"volume\":\"21 3\",\"pages\":\"149-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/15419061.2014.905928\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Adhesion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/15419061.2014.905928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Adhesion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/15419061.2014.905928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/4/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 22

摘要

锚定细胞连接对于维持心室工作心肌细胞的机电耦合是不可或缺的;然而,它们在心脏传导系统(CCS)的心肌细胞中的作用尚不清楚。最近对遗传小鼠模型和人类的研究强调了CCS中这些细胞连接和间隙连接的出现,并表明这些结构及其组成部分的缺陷与CCS中的传导障碍有关。在这里,我们概述了目前支持CCS中锚定和间隙连接之间整体关系的证据。具体来说,我们专注于(1)CCS特化心肌细胞中细胞-细胞连接的分子和超微结构证据,(2)专门针对心脏中表现出CCS传导缺陷的细胞-细胞连接成分的遗传小鼠模型,以及(3)来自表现出CCS电生理缺陷的细胞-细胞连接疾病患者的人类临床研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cell junctions in the specialized conduction system of the heart.

Anchoring cell junctions are integral in maintaining electro-mechanical coupling of ventricular working cardiomyocytes; however, their role in cardiomyocytes of the cardiac conduction system (CCS) remains less clear. Recent studies in genetic mouse models and humans highlight the appearance of these cell junctions alongside gap junctions in the CCS and also show that defects in these structures and their components are associated with conduction impairments in the CCS. Here we outline current evidence supporting an integral relationship between anchoring and gap junctions in the CCS. Specifically we focus on (1) molecular and ultrastructural evidence for cell-cell junctions in specialized cardiomyocytes of the CCS, (2) genetic mouse models specifically targeting cell-cell junction components in the heart which exhibit CCS conduction defects and (3) human clinical studies from patients with cell-cell junction-based diseases that exhibit CCS electrophysiological defects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Communication and Adhesion
Cell Communication and Adhesion 生物-生化与分子生物学
CiteScore
2.50
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation Cell Communication and Adhesion is an international Open Access journal which provides a central forum for research on mechanisms underlying cellular signalling and adhesion. The journal provides a single source of information concerning all forms of cellular communication, cell junctions, adhesion molecules and families of receptors from diverse biological systems. The journal welcomes submission of original research articles, reviews, short communications and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信