消化间迁移运动复合体的机制及临床意义。

Q3 Medicine
Toku Takahashi
{"title":"消化间迁移运动复合体的机制及临床意义。","authors":"Toku Takahashi","doi":"10.1540/jsmr.49.99","DOIUrl":null,"url":null,"abstract":"<p><p>Migrating motor complex (MMC) is well characterized by the appearance of gastrointestinal (GI) contractions in the interdigestive state. The physiological importance of gastric MMC is a mechanical and chemical cleansing of the empty stomach in preparation for the next meal. MMC cycle is mediated via the interaction between motilin and 5-hydroxytryptamine (5-HT) by the positive feedback mechanism in conscious dogs. Luminal administration of 5-HT initiates duodenal phase II and phase III with a concomitant increase of plasma motilin release. Duodenal 5-HT concentration is increased during gastric phase II and phase III. Intravenous infusion of motilin increases luminal 5-HT content and induces phase III. 5-HT4 antagonists significantly inhibit both of gastric and intestinal phase III, while 5-HT3 antagonists inhibit only gastric phase III. These suggest that gastric MMC is regulated via vagus, 5-HT3/4 receptors and motilin, while intestinal MMC is regulated via intrinsic primary afferent neurons (IPAN) and 5-HT4 receptors. We propose the possibility that maximally released motilin by a positive feedback depletes 5-HT granules in the duodenal EC cells, resulting in no more contractions. Stress is highly associated with the pathogenesis of functional dyspepsia (FD). Acoustic stress attenuates gastric phase III without affecting intestinal phase III in conscious dogs, via reduced vagal activity. Subset of FD patients shows reduced vagal activity and impaired gastric phase III. The impaired gastric MMC may aggravate dyspeptic symptoms following a food ingestion. Maintaining MMC cycle in the interdigestive state is an important factor to prevent the postprandial dyspeptic symptoms. </p>","PeriodicalId":39619,"journal":{"name":"Journal of Smooth Muscle Research","volume":"49 ","pages":"99-111"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1540/jsmr.49.99","citationCount":"44","resultStr":"{\"title\":\"Interdigestive migrating motor complex -its mechanism and clinical importance.\",\"authors\":\"Toku Takahashi\",\"doi\":\"10.1540/jsmr.49.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Migrating motor complex (MMC) is well characterized by the appearance of gastrointestinal (GI) contractions in the interdigestive state. The physiological importance of gastric MMC is a mechanical and chemical cleansing of the empty stomach in preparation for the next meal. MMC cycle is mediated via the interaction between motilin and 5-hydroxytryptamine (5-HT) by the positive feedback mechanism in conscious dogs. Luminal administration of 5-HT initiates duodenal phase II and phase III with a concomitant increase of plasma motilin release. Duodenal 5-HT concentration is increased during gastric phase II and phase III. Intravenous infusion of motilin increases luminal 5-HT content and induces phase III. 5-HT4 antagonists significantly inhibit both of gastric and intestinal phase III, while 5-HT3 antagonists inhibit only gastric phase III. These suggest that gastric MMC is regulated via vagus, 5-HT3/4 receptors and motilin, while intestinal MMC is regulated via intrinsic primary afferent neurons (IPAN) and 5-HT4 receptors. We propose the possibility that maximally released motilin by a positive feedback depletes 5-HT granules in the duodenal EC cells, resulting in no more contractions. Stress is highly associated with the pathogenesis of functional dyspepsia (FD). Acoustic stress attenuates gastric phase III without affecting intestinal phase III in conscious dogs, via reduced vagal activity. Subset of FD patients shows reduced vagal activity and impaired gastric phase III. The impaired gastric MMC may aggravate dyspeptic symptoms following a food ingestion. Maintaining MMC cycle in the interdigestive state is an important factor to prevent the postprandial dyspeptic symptoms. </p>\",\"PeriodicalId\":39619,\"journal\":{\"name\":\"Journal of Smooth Muscle Research\",\"volume\":\"49 \",\"pages\":\"99-111\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1540/jsmr.49.99\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Smooth Muscle Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1540/jsmr.49.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Smooth Muscle Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1540/jsmr.49.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 44

摘要

迁移运动复合体(MMC)的特点是在消化间期出现胃肠道(GI)收缩。胃MMC在生理上的重要性是对空腹进行机械和化学清洗,为下一餐做准备。清醒犬的MMC循环是通过胃动素和5-羟色胺(5-HT)的正反馈机制相互作用介导的。腹腔给药5-HT启动十二指肠II期和III期,同时血浆胃动素释放增加。十二指肠5-HT浓度在胃II期和III期升高。静脉输注胃动素可增加腔内5-HT含量,诱发III期。5-HT4拮抗剂显著抑制胃和肠III期,而5-HT3拮抗剂仅抑制胃III期。这些结果表明,胃MMC受迷走神经、5-HT3/4受体和胃动素的调控,而肠MMC受内在初级传入神经元(IPAN)和5-HT4受体的调控。我们认为,正反馈最大限度地释放胃动素可能会耗尽十二指肠EC细胞中的5-HT颗粒,导致不再收缩。应激与功能性消化不良(FD)的发病机制密切相关。在有意识的狗中,声应激通过迷走神经活动减弱胃III期而不影响肠III期。FD患者的亚群表现为迷走神经活动降低和胃III期受损。胃MMC受损可加重食物摄入后的消化不良症状。维持MMC循环在消化间期状态是预防餐后消化不良症状的重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interdigestive migrating motor complex -its mechanism and clinical importance.

Interdigestive migrating motor complex -its mechanism and clinical importance.

Interdigestive migrating motor complex -its mechanism and clinical importance.

Migrating motor complex (MMC) is well characterized by the appearance of gastrointestinal (GI) contractions in the interdigestive state. The physiological importance of gastric MMC is a mechanical and chemical cleansing of the empty stomach in preparation for the next meal. MMC cycle is mediated via the interaction between motilin and 5-hydroxytryptamine (5-HT) by the positive feedback mechanism in conscious dogs. Luminal administration of 5-HT initiates duodenal phase II and phase III with a concomitant increase of plasma motilin release. Duodenal 5-HT concentration is increased during gastric phase II and phase III. Intravenous infusion of motilin increases luminal 5-HT content and induces phase III. 5-HT4 antagonists significantly inhibit both of gastric and intestinal phase III, while 5-HT3 antagonists inhibit only gastric phase III. These suggest that gastric MMC is regulated via vagus, 5-HT3/4 receptors and motilin, while intestinal MMC is regulated via intrinsic primary afferent neurons (IPAN) and 5-HT4 receptors. We propose the possibility that maximally released motilin by a positive feedback depletes 5-HT granules in the duodenal EC cells, resulting in no more contractions. Stress is highly associated with the pathogenesis of functional dyspepsia (FD). Acoustic stress attenuates gastric phase III without affecting intestinal phase III in conscious dogs, via reduced vagal activity. Subset of FD patients shows reduced vagal activity and impaired gastric phase III. The impaired gastric MMC may aggravate dyspeptic symptoms following a food ingestion. Maintaining MMC cycle in the interdigestive state is an important factor to prevent the postprandial dyspeptic symptoms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Smooth Muscle Research
Journal of Smooth Muscle Research Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
2.30
自引率
0.00%
发文量
7
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信