Jonathan G Sun, Steven G Adie, Eric J Chaney, Stephen A Boppart
{"title":"用于乳腺癌诊断的光学相干断层扫描和x射线图像的分割和相关。","authors":"Jonathan G Sun, Steven G Adie, Eric J Chaney, Stephen A Boppart","doi":"10.1142/S1793545813500156","DOIUrl":null,"url":null,"abstract":"<p><p>Pre-operative X-ray mammography and intraoperative X-ray specimen radiography are routinely used to identify breast cancer pathology. Recent advances in optical coherence tomography (OCT) have enabled its use for the intraoperative assessment of surgical margins during breast cancer surgery. While each modality offers distinct contrast of normal and pathological features, there is an essential need to correlate image-based features between the two modalities to take advantage of the diagnostic capabilities of each technique. We compare OCT to X-ray images of resected human breast tissue and correlate different tissue features between modalities for future use in real-time intraoperative OCT imaging. X-ray imaging (specimen radiography) is currently used during surgical breast cancer procedures to verify tumor margins, but cannot image tissue <i>in situ.</i> OCT has the potential to solve this problem by providing intraoperative imaging of the resected specimen as well as the <i>in situ</i> tumor cavity. OCT and micro-CT (X-ray) images are automatically segmented using different computational approaches, and quantitatively compared to determine the ability of these algorithms to automatically differentiate regions of adipose tissue from tumor. Furthermore, two-dimensional (2D) and three-dimensional (3D) results are compared. These correlations, combined with real-time intraoperative OCT, have the potential to identify possible regions of tumor within breast tissue which correlate to tumor regions identified previously on X-ray imaging (mammography or specimen radiography).</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"6 2","pages":"1350015"},"PeriodicalIF":2.3000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793545813500156","citationCount":"15","resultStr":"{\"title\":\"SEGMENTATION AND CORRELATION OF OPTICAL COHERENCE TOMOGRAPHY AND X-RAY IMAGES FOR BREAST CANCER DIAGNOSTICS.\",\"authors\":\"Jonathan G Sun, Steven G Adie, Eric J Chaney, Stephen A Boppart\",\"doi\":\"10.1142/S1793545813500156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pre-operative X-ray mammography and intraoperative X-ray specimen radiography are routinely used to identify breast cancer pathology. Recent advances in optical coherence tomography (OCT) have enabled its use for the intraoperative assessment of surgical margins during breast cancer surgery. While each modality offers distinct contrast of normal and pathological features, there is an essential need to correlate image-based features between the two modalities to take advantage of the diagnostic capabilities of each technique. We compare OCT to X-ray images of resected human breast tissue and correlate different tissue features between modalities for future use in real-time intraoperative OCT imaging. X-ray imaging (specimen radiography) is currently used during surgical breast cancer procedures to verify tumor margins, but cannot image tissue <i>in situ.</i> OCT has the potential to solve this problem by providing intraoperative imaging of the resected specimen as well as the <i>in situ</i> tumor cavity. OCT and micro-CT (X-ray) images are automatically segmented using different computational approaches, and quantitatively compared to determine the ability of these algorithms to automatically differentiate regions of adipose tissue from tumor. Furthermore, two-dimensional (2D) and three-dimensional (3D) results are compared. These correlations, combined with real-time intraoperative OCT, have the potential to identify possible regions of tumor within breast tissue which correlate to tumor regions identified previously on X-ray imaging (mammography or specimen radiography).</p>\",\"PeriodicalId\":16248,\"journal\":{\"name\":\"Journal of Innovative Optical Health Sciences\",\"volume\":\"6 2\",\"pages\":\"1350015\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2013-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S1793545813500156\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Innovative Optical Health Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793545813500156\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovative Optical Health Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/S1793545813500156","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
SEGMENTATION AND CORRELATION OF OPTICAL COHERENCE TOMOGRAPHY AND X-RAY IMAGES FOR BREAST CANCER DIAGNOSTICS.
Pre-operative X-ray mammography and intraoperative X-ray specimen radiography are routinely used to identify breast cancer pathology. Recent advances in optical coherence tomography (OCT) have enabled its use for the intraoperative assessment of surgical margins during breast cancer surgery. While each modality offers distinct contrast of normal and pathological features, there is an essential need to correlate image-based features between the two modalities to take advantage of the diagnostic capabilities of each technique. We compare OCT to X-ray images of resected human breast tissue and correlate different tissue features between modalities for future use in real-time intraoperative OCT imaging. X-ray imaging (specimen radiography) is currently used during surgical breast cancer procedures to verify tumor margins, but cannot image tissue in situ. OCT has the potential to solve this problem by providing intraoperative imaging of the resected specimen as well as the in situ tumor cavity. OCT and micro-CT (X-ray) images are automatically segmented using different computational approaches, and quantitatively compared to determine the ability of these algorithms to automatically differentiate regions of adipose tissue from tumor. Furthermore, two-dimensional (2D) and three-dimensional (3D) results are compared. These correlations, combined with real-time intraoperative OCT, have the potential to identify possible regions of tumor within breast tissue which correlate to tumor regions identified previously on X-ray imaging (mammography or specimen radiography).
期刊介绍:
JIOHS serves as an international forum for the publication of the latest developments in all areas of photonics in biology and medicine. JIOHS will consider for publication original papers in all disciplines of photonics in biology and medicine, including but not limited to:
-Photonic therapeutics and diagnostics-
Optical clinical technologies and systems-
Tissue optics-
Laser-tissue interaction and tissue engineering-
Biomedical spectroscopy-
Advanced microscopy and imaging-
Nanobiophotonics and optical molecular imaging-
Multimodal and hybrid biomedical imaging-
Micro/nanofabrication-
Medical microsystems-
Optical coherence tomography-
Photodynamic therapy.
JIOHS provides a vehicle to help professionals, graduates, engineers, academics and researchers working in the field of intelligent photonics in biology and medicine to disseminate information on the state-of-the-art technique.