人类研究中的数据采集和预处理:统计学课上没教什么?

IF 1.8 4区 数学 Q1 STATISTICS & PROBABILITY
Yeyi Zhu, Ladia M Hernandez, Peter Mueller, Yongquan Dong, Michele R Forman
{"title":"人类研究中的数据采集和预处理:统计学课上没教什么?","authors":"Yeyi Zhu, Ladia M Hernandez, Peter Mueller, Yongquan Dong, Michele R Forman","doi":"10.1080/00031305.2013.842498","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this paper is to address issues in research that may be missing from statistics classes and important for (bio-)statistics students. In the context of a case study, we discuss data acquisition and preprocessing steps that fill the gap between research questions posed by subject matter scientists and statistical methodology for formal inference. Issues include participant recruitment, data collection training and standardization, variable coding, data review and verification, data cleaning and editing, and documentation. Despite the critical importance of these details in research, most of these issues are rarely discussed in an applied statistics program. One reason for the lack of more formal training is the difficulty in addressing the many challenges that can possibly arise in the course of a study in a systematic way. This article can help to bridge this gap between research questions and formal statistical inference by using an illustrative case study for a discussion. We hope that reading and discussing this paper and practicing data preprocessing exercises will sensitize statistics students to these important issues and achieve optimal conduct, quality control, analysis, and interpretation of a study.</p>","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"67 4","pages":"235-241"},"PeriodicalIF":1.8000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912269/pdf/nihms537499.pdf","citationCount":"0","resultStr":"{\"title\":\"Data Acquisition and Preprocessing in Studies on Humans: What Is Not Taught in Statistics Classes?\",\"authors\":\"Yeyi Zhu, Ladia M Hernandez, Peter Mueller, Yongquan Dong, Michele R Forman\",\"doi\":\"10.1080/00031305.2013.842498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this paper is to address issues in research that may be missing from statistics classes and important for (bio-)statistics students. In the context of a case study, we discuss data acquisition and preprocessing steps that fill the gap between research questions posed by subject matter scientists and statistical methodology for formal inference. Issues include participant recruitment, data collection training and standardization, variable coding, data review and verification, data cleaning and editing, and documentation. Despite the critical importance of these details in research, most of these issues are rarely discussed in an applied statistics program. One reason for the lack of more formal training is the difficulty in addressing the many challenges that can possibly arise in the course of a study in a systematic way. This article can help to bridge this gap between research questions and formal statistical inference by using an illustrative case study for a discussion. We hope that reading and discussing this paper and practicing data preprocessing exercises will sensitize statistics students to these important issues and achieve optimal conduct, quality control, analysis, and interpretation of a study.</p>\",\"PeriodicalId\":50801,\"journal\":{\"name\":\"American Statistician\",\"volume\":\"67 4\",\"pages\":\"235-241\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912269/pdf/nihms537499.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Statistician\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00031305.2013.842498\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Statistician","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00031305.2013.842498","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在讨论研究中的问题,这些问题可能是统计课程中缺失的,对(生物)统计专业的学生也很重要。在案例研究的背景下,我们讨论了数据采集和预处理步骤,这些步骤填补了主题科学家提出的研究问题与正式推论的统计方法之间的空白。问题包括参与者招募、数据收集培训和标准化、变量编码、数据审查和验证、数据清理和编辑以及文档记录。尽管这些细节在研究中至关重要,但在应用统计学课程中却很少讨论这些问题。缺乏更多正规培训的原因之一是很难系统地应对研究过程中可能出现的诸多挑战。本文通过使用一个说明性案例进行讨论,有助于弥合研究问题与正式统计推断之间的差距。我们希望,通过阅读和讨论本文以及练习数据预处理练习,统计专业的学生能对这些重要问题有更敏感的认识,从而实现研究的最佳开展、质量控制、分析和解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Acquisition and Preprocessing in Studies on Humans: What Is Not Taught in Statistics Classes?

The aim of this paper is to address issues in research that may be missing from statistics classes and important for (bio-)statistics students. In the context of a case study, we discuss data acquisition and preprocessing steps that fill the gap between research questions posed by subject matter scientists and statistical methodology for formal inference. Issues include participant recruitment, data collection training and standardization, variable coding, data review and verification, data cleaning and editing, and documentation. Despite the critical importance of these details in research, most of these issues are rarely discussed in an applied statistics program. One reason for the lack of more formal training is the difficulty in addressing the many challenges that can possibly arise in the course of a study in a systematic way. This article can help to bridge this gap between research questions and formal statistical inference by using an illustrative case study for a discussion. We hope that reading and discussing this paper and practicing data preprocessing exercises will sensitize statistics students to these important issues and achieve optimal conduct, quality control, analysis, and interpretation of a study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Statistician
American Statistician 数学-统计学与概率论
CiteScore
3.50
自引率
5.60%
发文量
64
审稿时长
>12 weeks
期刊介绍: Are you looking for general-interest articles about current national and international statistical problems and programs; interesting and fun articles of a general nature about statistics and its applications; or the teaching of statistics? Then you are looking for The American Statistician (TAS), published quarterly by the American Statistical Association. TAS contains timely articles organized into the following sections: Statistical Practice, General, Teacher''s Corner, History Corner, Interdisciplinary, Statistical Computing and Graphics, Reviews of Books and Teaching Materials, and Letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信