数据分析指导抗微生物纳米药物的合理设计,以对抗机会性耐药病原体

IF 4.7 4区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Adam S. Mullis PhD , Scott R. Broderick PhD , Kruttika S. Phadke BS , Nathan Peroutka-Bigus PhD , Bryan H. Bellaire PhD , Krishna Rajan PhD , Balaji Narasimhan ScD
{"title":"数据分析指导抗微生物纳米药物的合理设计,以对抗机会性耐药病原体","authors":"Adam S. Mullis PhD ,&nbsp;Scott R. Broderick PhD ,&nbsp;Kruttika S. Phadke BS ,&nbsp;Nathan Peroutka-Bigus PhD ,&nbsp;Bryan H. Bellaire PhD ,&nbsp;Krishna Rajan PhD ,&nbsp;Balaji Narasimhan ScD","doi":"10.1016/j.nano.2022.102647","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Nanoparticle<span> carriers can improve antibiotic efficacy by altering </span></span>drug<span> biodistribution. However, traditional screening is impracticable due to a massive dataspace. A hybrid informatics approach was developed to identify polymer, antibiotic, and particle determinants of antimicrobial </span></span>nanomedicine activity against </span><span><em>Burkholderia cepacia</em></span><span><span><span>, and to model nanomedicine performance. Polymer glass transition temperature, drug octanol-water </span>partition coefficient<span><span>, strongest acid dissociation constant, physiological charge, particle diameter, count and mass mean </span>polydispersity index, </span></span>zeta potential<span>, fraction drug released at 2 h, and fraction release slope at 2 h were highly correlated with antimicrobial performance. Graph analysis provided dimensionality reduction while preserving nonlinear descriptor-property relationships, enabling accurate modeling of nanomedicine performance. The model successfully predicted particle performance in holdout validation, with moderate accuracy at rank-ordering. This data analytics-guided approach provides an important step toward the development of a rational design framework for antimicrobial nanomedicines against resistant infections by selecting appropriate carriers and payloads for improved potency.</span></span></p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"48 ","pages":"Article 102647"},"PeriodicalIF":4.7000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data analytics-guided rational design of antimicrobial nanomedicines against opportunistic, resistant pathogens\",\"authors\":\"Adam S. Mullis PhD ,&nbsp;Scott R. Broderick PhD ,&nbsp;Kruttika S. Phadke BS ,&nbsp;Nathan Peroutka-Bigus PhD ,&nbsp;Bryan H. Bellaire PhD ,&nbsp;Krishna Rajan PhD ,&nbsp;Balaji Narasimhan ScD\",\"doi\":\"10.1016/j.nano.2022.102647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Nanoparticle<span> carriers can improve antibiotic efficacy by altering </span></span>drug<span> biodistribution. However, traditional screening is impracticable due to a massive dataspace. A hybrid informatics approach was developed to identify polymer, antibiotic, and particle determinants of antimicrobial </span></span>nanomedicine activity against </span><span><em>Burkholderia cepacia</em></span><span><span><span>, and to model nanomedicine performance. Polymer glass transition temperature, drug octanol-water </span>partition coefficient<span><span>, strongest acid dissociation constant, physiological charge, particle diameter, count and mass mean </span>polydispersity index, </span></span>zeta potential<span>, fraction drug released at 2 h, and fraction release slope at 2 h were highly correlated with antimicrobial performance. Graph analysis provided dimensionality reduction while preserving nonlinear descriptor-property relationships, enabling accurate modeling of nanomedicine performance. The model successfully predicted particle performance in holdout validation, with moderate accuracy at rank-ordering. This data analytics-guided approach provides an important step toward the development of a rational design framework for antimicrobial nanomedicines against resistant infections by selecting appropriate carriers and payloads for improved potency.</span></span></p></div>\",\"PeriodicalId\":396,\"journal\":{\"name\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"volume\":\"48 \",\"pages\":\"Article 102647\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963422001332\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963422001332","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

纳米颗粒载体可以通过改变药物的生物分布来提高抗生素的疗效。然而,由于数据空间庞大,传统的筛选方法难以实现。开发了一种混合信息学方法来鉴定抗洋葱伯克霍尔德菌抗菌纳米药物活性的聚合物,抗生素和颗粒决定因素,并模拟纳米药物的性能。聚合物玻璃化转变温度、药物辛醇-水分配系数、最强酸解离常数、生理电荷、颗粒直径、计数和质量平均多分散性指数、zeta电位、2 h药物释放分数和2 h药物释放斜率与抗菌性能高度相关。图分析提供了降维,同时保留了非线性描述符-属性关系,使纳米药物性能的准确建模成为可能。该模型在hold - out验证中成功预测了颗粒性能,在排序上具有中等精度。这种以数据分析为指导的方法通过选择合适的载体和有效载荷来提高效力,为抗耐药性感染的抗菌纳米药物的合理设计框架的发展提供了重要的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Data analytics-guided rational design of antimicrobial nanomedicines against opportunistic, resistant pathogens

Data analytics-guided rational design of antimicrobial nanomedicines against opportunistic, resistant pathogens

Nanoparticle carriers can improve antibiotic efficacy by altering drug biodistribution. However, traditional screening is impracticable due to a massive dataspace. A hybrid informatics approach was developed to identify polymer, antibiotic, and particle determinants of antimicrobial nanomedicine activity against Burkholderia cepacia, and to model nanomedicine performance. Polymer glass transition temperature, drug octanol-water partition coefficient, strongest acid dissociation constant, physiological charge, particle diameter, count and mass mean polydispersity index, zeta potential, fraction drug released at 2 h, and fraction release slope at 2 h were highly correlated with antimicrobial performance. Graph analysis provided dimensionality reduction while preserving nonlinear descriptor-property relationships, enabling accurate modeling of nanomedicine performance. The model successfully predicted particle performance in holdout validation, with moderate accuracy at rank-ordering. This data analytics-guided approach provides an important step toward the development of a rational design framework for antimicrobial nanomedicines against resistant infections by selecting appropriate carriers and payloads for improved potency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
3.60%
发文量
104
审稿时长
4.6 months
期刊介绍: Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信