质量维1费米子:构建黑暗

IF 23.9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Dharam Vir Ahluwalia , Julio M. Hoff da Silva , Cheng-Yang Lee , Yu-Xiao Liu , Saulo H. Pereira , Masoumeh Moazzen Sorkhi
{"title":"质量维1费米子:构建黑暗","authors":"Dharam Vir Ahluwalia ,&nbsp;Julio M. Hoff da Silva ,&nbsp;Cheng-Yang Lee ,&nbsp;Yu-Xiao Liu ,&nbsp;Saulo H. Pereira ,&nbsp;Masoumeh Moazzen Sorkhi","doi":"10.1016/j.physrep.2022.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>Θ</mi></math></span> be the Wigner time reversal operator for spin half and let <span><math><mi>ϕ</mi></math></span> be a Weyl spinor. Then, for a left-transforming <span><math><mi>ϕ</mi></math></span>, the construct <span><math><mrow><msub><mrow><mi>ζ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mi>Θ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> yields a right-transforming spinor. If instead, <span><math><mi>ϕ</mi></math></span> is a right-transforming spinor, then the construct <span><math><mrow><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mi>Θ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> results in a left-transforming spinor (<span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>ρ</mi></mrow></msub></math></span> are phase factors). This allows us to introduce two sets of four-component spinors. Setting <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ρ</mi></mrow></msub></math></span> to <span><math><mrow><mo>±</mo><mi>i</mi></mrow></math></span> renders all eight spinors as eigenspinor of the charge conjugation operator <span><math><mi>C</mi></math></span> (called ELKO). This allows us to introduce two quantum fields. A calculation of the vacuum expectation value of the time-ordered product of the fields and their adjoints reveals the mass dimension of the fields to be one. Both fields are local in the canonical sense of quantum field theory. Interestingly, one of the fields is fermionic and the other bosonic. The mass dimension of the introduced fermionic fields and the matter fields of the Standard Model carry an intrinsic mismatch. As such, they provide natural darkness for the new fields with respect to the Standard Model doublets. The statistics and locality are controlled by a set of phases. These are explicitly given. Then we observe that in <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>μ</mi></mrow></msub><msup><mrow><mi>p</mi></mrow><mrow><mi>μ</mi></mrow></msup></mrow></math></span>= m<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>, Dirac took the simplest square root of the 4 × 4 identity matrix <span><math><mi>I</mi></math></span> (in <span><math><mrow><mi>I</mi><mo>×</mo></mrow></math></span>m<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>, while introducing <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msup><mrow><mi>p</mi></mrow><mrow><mi>μ</mi></mrow></msup></mrow></math></span> as the square root of the left hand side of the dispersion relation), and as such he implicitly ignored the remaining fifteen. When we examine the remaining roots, we obtain additional bosonic and fermionic dark matter candidates of spin half. We point out that by early nineteen seventies, Dirac had suspected the existence of spin half bosons, in the same space as his fermions. This is interweaved with a detailed discussion of duals and adjoints. We study the fermionic self-interaction and interactions with a real scalar field. We show that a consistent interacting theory can be formulated using the ELKO adjoint up to one-loop thus circumventing the earlier problem of unitarity violation. We then undertake quantum field theoretic calculation that establishes the Newtonian gravitational interaction for a mass dimension one dark matter candidate. The report ends: (a) by studying the partition function and main thermodynamic properties of the mass dimension one fermionic field in the context of the dark matter halo of galaxies. For the Milky Way, the observational data of rotation curve fits quite well for a fermionic mass of about 23 eV; and (b) by introducing higher-dimensional ELKOs in braneworld scenario. After a brief introduction of some braneworld models, we review the localization of higher-dimensional ELKOs on flat and bent branes with appropriate localization mechanisms. We discuss the massless and massive Kaluza–Klein modes of ELKO fields on branes and give a comparison with other fields.</p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"967 ","pages":"Pages 1-43"},"PeriodicalIF":23.9000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Mass dimension one fermions: Constructing darkness\",\"authors\":\"Dharam Vir Ahluwalia ,&nbsp;Julio M. Hoff da Silva ,&nbsp;Cheng-Yang Lee ,&nbsp;Yu-Xiao Liu ,&nbsp;Saulo H. Pereira ,&nbsp;Masoumeh Moazzen Sorkhi\",\"doi\":\"10.1016/j.physrep.2022.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>Θ</mi></math></span> be the Wigner time reversal operator for spin half and let <span><math><mi>ϕ</mi></math></span> be a Weyl spinor. Then, for a left-transforming <span><math><mi>ϕ</mi></math></span>, the construct <span><math><mrow><msub><mrow><mi>ζ</mi></mrow><mrow><mi>λ</mi></mrow></msub><mi>Θ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> yields a right-transforming spinor. If instead, <span><math><mi>ϕ</mi></math></span> is a right-transforming spinor, then the construct <span><math><mrow><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mi>Θ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> results in a left-transforming spinor (<span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>ρ</mi></mrow></msub></math></span> are phase factors). This allows us to introduce two sets of four-component spinors. Setting <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ρ</mi></mrow></msub></math></span> to <span><math><mrow><mo>±</mo><mi>i</mi></mrow></math></span> renders all eight spinors as eigenspinor of the charge conjugation operator <span><math><mi>C</mi></math></span> (called ELKO). This allows us to introduce two quantum fields. A calculation of the vacuum expectation value of the time-ordered product of the fields and their adjoints reveals the mass dimension of the fields to be one. Both fields are local in the canonical sense of quantum field theory. Interestingly, one of the fields is fermionic and the other bosonic. The mass dimension of the introduced fermionic fields and the matter fields of the Standard Model carry an intrinsic mismatch. As such, they provide natural darkness for the new fields with respect to the Standard Model doublets. The statistics and locality are controlled by a set of phases. These are explicitly given. Then we observe that in <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>μ</mi></mrow></msub><msup><mrow><mi>p</mi></mrow><mrow><mi>μ</mi></mrow></msup></mrow></math></span>= m<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>, Dirac took the simplest square root of the 4 × 4 identity matrix <span><math><mi>I</mi></math></span> (in <span><math><mrow><mi>I</mi><mo>×</mo></mrow></math></span>m<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>, while introducing <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msup><mrow><mi>p</mi></mrow><mrow><mi>μ</mi></mrow></msup></mrow></math></span> as the square root of the left hand side of the dispersion relation), and as such he implicitly ignored the remaining fifteen. When we examine the remaining roots, we obtain additional bosonic and fermionic dark matter candidates of spin half. We point out that by early nineteen seventies, Dirac had suspected the existence of spin half bosons, in the same space as his fermions. This is interweaved with a detailed discussion of duals and adjoints. We study the fermionic self-interaction and interactions with a real scalar field. We show that a consistent interacting theory can be formulated using the ELKO adjoint up to one-loop thus circumventing the earlier problem of unitarity violation. We then undertake quantum field theoretic calculation that establishes the Newtonian gravitational interaction for a mass dimension one dark matter candidate. The report ends: (a) by studying the partition function and main thermodynamic properties of the mass dimension one fermionic field in the context of the dark matter halo of galaxies. For the Milky Way, the observational data of rotation curve fits quite well for a fermionic mass of about 23 eV; and (b) by introducing higher-dimensional ELKOs in braneworld scenario. After a brief introduction of some braneworld models, we review the localization of higher-dimensional ELKOs on flat and bent branes with appropriate localization mechanisms. We discuss the massless and massive Kaluza–Klein modes of ELKO fields on branes and give a comparison with other fields.</p></div>\",\"PeriodicalId\":404,\"journal\":{\"name\":\"Physics Reports\",\"volume\":\"967 \",\"pages\":\"Pages 1-43\"},\"PeriodicalIF\":23.9000,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Reports\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370157322001223\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157322001223","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 14

摘要

设Θ为自旋一半的维格纳时间反转算子,设φ为Weyl旋量。然后,对于一个左变换的φ,构造ζλΘϕ *产生一个右变换的旋量。如果相反,φ是右变换的旋量,则构造ζρΘϕ *得到左变换的旋量(ζλ,ρ是相位因子)。这允许我们引入两组四分量旋量。设ζλ和ζρ为±i,使所有八个旋量都成为电荷共轭算子C(称为ELKO)的本征旋量。这允许我们引入两个量子场。通过计算电磁场及其伴随阵的时间序积的真空期望值,可以发现电磁场的质量维数为1。这两个场在量子场论的规范意义上都是局域的。有趣的是,其中一个场是费米子场,另一个是玻色子场。引入的费米子场的质量维度与标准模型的物质场具有内在的不匹配。因此,它们为新领域提供了相对于标准模型双峰的自然黑暗。统计量和局部性由一组阶段控制。这些都是明确给出的。然后我们观察到,在pμpμ= m2中,狄拉克取4 × 4单位矩阵I的最简单平方根(在I×m2中,同时引入γμpμ作为色散关系左侧的平方根),因此他隐含地忽略了其余的15个。当我们检查剩余的根时,我们获得了自旋为一半的额外玻色子和费米子暗物质候选者。我们指出,到20世纪70年代初,狄拉克已经怀疑自旋半玻色子的存在,在与他的费米子相同的空间中。这与对偶和伴随的详细讨论交织在一起。研究了费米子的自相互作用和与实标量场的相互作用。我们证明了一个一致的相互作用理论可以用ELKO伴随到一个环来表述,从而规避了先前的统一性违反问题。然后,我们进行量子场论计算,为质量维度为1的暗物质候选者建立牛顿引力相互作用。报告的最后:(a)研究了星系暗物质晕背景下质量维1费米子场的配分函数和主要热力学性质。对于银河系,旋转曲线的观测数据与费米子质量约为23 eV的观测数据非常吻合;(b)在膜世界场景中引入高维elko。在简要介绍了一些膜世界模型之后,我们回顾了高维elko在平面和弯曲膜上的局部化以及适当的局部化机制。讨论了膜上ELKO场的无质量和有质量Kaluza-Klein模,并与其他场进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mass dimension one fermions: Constructing darkness

Let Θ be the Wigner time reversal operator for spin half and let ϕ be a Weyl spinor. Then, for a left-transforming ϕ, the construct ζλΘϕ yields a right-transforming spinor. If instead, ϕ is a right-transforming spinor, then the construct ζρΘϕ results in a left-transforming spinor (ζλ,ρ are phase factors). This allows us to introduce two sets of four-component spinors. Setting ζλ and ζρ to ±i renders all eight spinors as eigenspinor of the charge conjugation operator C (called ELKO). This allows us to introduce two quantum fields. A calculation of the vacuum expectation value of the time-ordered product of the fields and their adjoints reveals the mass dimension of the fields to be one. Both fields are local in the canonical sense of quantum field theory. Interestingly, one of the fields is fermionic and the other bosonic. The mass dimension of the introduced fermionic fields and the matter fields of the Standard Model carry an intrinsic mismatch. As such, they provide natural darkness for the new fields with respect to the Standard Model doublets. The statistics and locality are controlled by a set of phases. These are explicitly given. Then we observe that in pμpμ= m2, Dirac took the simplest square root of the 4 × 4 identity matrix I (in I×m2, while introducing γμpμ as the square root of the left hand side of the dispersion relation), and as such he implicitly ignored the remaining fifteen. When we examine the remaining roots, we obtain additional bosonic and fermionic dark matter candidates of spin half. We point out that by early nineteen seventies, Dirac had suspected the existence of spin half bosons, in the same space as his fermions. This is interweaved with a detailed discussion of duals and adjoints. We study the fermionic self-interaction and interactions with a real scalar field. We show that a consistent interacting theory can be formulated using the ELKO adjoint up to one-loop thus circumventing the earlier problem of unitarity violation. We then undertake quantum field theoretic calculation that establishes the Newtonian gravitational interaction for a mass dimension one dark matter candidate. The report ends: (a) by studying the partition function and main thermodynamic properties of the mass dimension one fermionic field in the context of the dark matter halo of galaxies. For the Milky Way, the observational data of rotation curve fits quite well for a fermionic mass of about 23 eV; and (b) by introducing higher-dimensional ELKOs in braneworld scenario. After a brief introduction of some braneworld models, we review the localization of higher-dimensional ELKOs on flat and bent branes with appropriate localization mechanisms. We discuss the massless and massive Kaluza–Klein modes of ELKO fields on branes and give a comparison with other fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Reports
Physics Reports 物理-物理:综合
CiteScore
56.10
自引率
0.70%
发文量
102
审稿时长
9.1 weeks
期刊介绍: Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信