mofs衍生的CuO - Fe3O4@C具有丰富的氧空位和强的Cu-Fe相互作用,用于双酚A的深部矿化

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Wenjun Zhu , Xiaohua Zuo , Xiaofei Zhang , Xiangyi Deng , Deng Ding , Chunlei Wang , JunTao Yan , Xiaobo Wang , Guanghui Wang
{"title":"mofs衍生的CuO - Fe3O4@C具有丰富的氧空位和强的Cu-Fe相互作用,用于双酚A的深部矿化","authors":"Wenjun Zhu ,&nbsp;Xiaohua Zuo ,&nbsp;Xiaofei Zhang ,&nbsp;Xiangyi Deng ,&nbsp;Deng Ding ,&nbsp;Chunlei Wang ,&nbsp;JunTao Yan ,&nbsp;Xiaobo Wang ,&nbsp;Guanghui Wang","doi":"10.1016/j.envres.2023.115847","DOIUrl":null,"url":null,"abstract":"<div><p>A novel CuO–Fe<sub>3</sub>O<sub>4</sub> encapsulated in the carbon framework with abundant oxygen vacancies (CuO–Fe<sub>3</sub>O<sub>4</sub>@C) was successfully prepared by thermal conversion of Cu(OAc)<sub>2</sub><span>/Fe-metal organic framework. The as-prepared catalyst exhibited excellent peroxymonosulfate (PMS) activation performance, good recyclability<span> and fast magnetic separation. Under optimal conditions, the added BPA (60 mg/L) could be completely removed by CuO–Fe</span></span><sub>3</sub>O<sub>4</sub>@C/PMS system within 15 min with the degradation rate constant (<em>k</em>) of 0.32 min<sup>−1</sup>, being 10.3 and 246.2 times that in CuO/PMS (0.031min<sup>−1</sup>) and Fe<sub>3</sub>O<sub>4</sub>/PMS (0.0013 min<sup>−1</sup>) system. A deep mineralization rate of BPA (>80%) was achieved within 60 min. The results demonstrated the synergistic effect of bimetallic clusters, oxygen vacancies and carbon framework was a key benefit for the exposure of more active sites, the electron donor capacity and the mass transfer of substrates, thereby promoting the decomposition of BPA. Capture experiments and EPR indicated that <sup>1</sup>O<sub>2</sub><span> was the predominant reactive oxygen species (ROSs). The degradation routes of BPA and the activation mechanism of PMS were proposed. This study offers an opportunity to develop promising MOFs-derived hybrid catalysts with tailored structures and properties for the practical application of SR-AOPs.</span></p></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"228 ","pages":"Article 115847"},"PeriodicalIF":7.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"MOFs-derived CuO–Fe3O4@C with abundant oxygen vacancies and strong Cu–Fe interaction for deep mineralization of bisphenol A\",\"authors\":\"Wenjun Zhu ,&nbsp;Xiaohua Zuo ,&nbsp;Xiaofei Zhang ,&nbsp;Xiangyi Deng ,&nbsp;Deng Ding ,&nbsp;Chunlei Wang ,&nbsp;JunTao Yan ,&nbsp;Xiaobo Wang ,&nbsp;Guanghui Wang\",\"doi\":\"10.1016/j.envres.2023.115847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel CuO–Fe<sub>3</sub>O<sub>4</sub> encapsulated in the carbon framework with abundant oxygen vacancies (CuO–Fe<sub>3</sub>O<sub>4</sub>@C) was successfully prepared by thermal conversion of Cu(OAc)<sub>2</sub><span>/Fe-metal organic framework. The as-prepared catalyst exhibited excellent peroxymonosulfate (PMS) activation performance, good recyclability<span> and fast magnetic separation. Under optimal conditions, the added BPA (60 mg/L) could be completely removed by CuO–Fe</span></span><sub>3</sub>O<sub>4</sub>@C/PMS system within 15 min with the degradation rate constant (<em>k</em>) of 0.32 min<sup>−1</sup>, being 10.3 and 246.2 times that in CuO/PMS (0.031min<sup>−1</sup>) and Fe<sub>3</sub>O<sub>4</sub>/PMS (0.0013 min<sup>−1</sup>) system. A deep mineralization rate of BPA (>80%) was achieved within 60 min. The results demonstrated the synergistic effect of bimetallic clusters, oxygen vacancies and carbon framework was a key benefit for the exposure of more active sites, the electron donor capacity and the mass transfer of substrates, thereby promoting the decomposition of BPA. Capture experiments and EPR indicated that <sup>1</sup>O<sub>2</sub><span> was the predominant reactive oxygen species (ROSs). The degradation routes of BPA and the activation mechanism of PMS were proposed. This study offers an opportunity to develop promising MOFs-derived hybrid catalysts with tailored structures and properties for the practical application of SR-AOPs.</span></p></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":\"228 \",\"pages\":\"Article 115847\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935123006394\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935123006394","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 5

摘要

通过Cu(OAc)2/Fe-metal有机骨架的热转化,成功制备了一种包裹在富含氧空位的碳骨架(CuO - Fe3O4@C)中的新型CuO - fe3o4。所制备的催化剂具有优异的过氧单硫酸盐(PMS)活化性能、良好的可回收性和快速的磁分离性能。在最佳条件下,添加的BPA (60 mg/L)在CuO - Fe3O4@C/PMS体系可在15 min内完全去除,降解速率常数(k)为0.32 min−1,分别是CuO/PMS (0.031min−1)和Fe3O4/PMS (0.0013 min−1)体系的10.3和246.2倍。结果表明,双金属团簇、氧空位和碳骨架的协同作用有利于暴露更多的活性位点、提高电子供体容量和底物的传质,从而促进BPA的分解。捕获实验和EPR表明1O2是主要的活性氧(ROSs)。提出了双酚a的降解途径和PMS的活化机理。这项研究为开发具有定制结构和性能的mofs衍生杂化催化剂提供了机会,这些催化剂可用于SR-AOPs的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MOFs-derived CuO–Fe3O4@C with abundant oxygen vacancies and strong Cu–Fe interaction for deep mineralization of bisphenol A

MOFs-derived CuO–Fe3O4@C with abundant oxygen vacancies and strong Cu–Fe interaction for deep mineralization of bisphenol A

A novel CuO–Fe3O4 encapsulated in the carbon framework with abundant oxygen vacancies (CuO–Fe3O4@C) was successfully prepared by thermal conversion of Cu(OAc)2/Fe-metal organic framework. The as-prepared catalyst exhibited excellent peroxymonosulfate (PMS) activation performance, good recyclability and fast magnetic separation. Under optimal conditions, the added BPA (60 mg/L) could be completely removed by CuO–Fe3O4@C/PMS system within 15 min with the degradation rate constant (k) of 0.32 min−1, being 10.3 and 246.2 times that in CuO/PMS (0.031min−1) and Fe3O4/PMS (0.0013 min−1) system. A deep mineralization rate of BPA (>80%) was achieved within 60 min. The results demonstrated the synergistic effect of bimetallic clusters, oxygen vacancies and carbon framework was a key benefit for the exposure of more active sites, the electron donor capacity and the mass transfer of substrates, thereby promoting the decomposition of BPA. Capture experiments and EPR indicated that 1O2 was the predominant reactive oxygen species (ROSs). The degradation routes of BPA and the activation mechanism of PMS were proposed. This study offers an opportunity to develop promising MOFs-derived hybrid catalysts with tailored structures and properties for the practical application of SR-AOPs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信