mTORC1在各种机械刺激下调节蛋白质合成和骨骼肌质量中的作用。

2区 医学 Q1 Biochemistry, Genetics and Molecular Biology
Craig A Goodman
{"title":"mTORC1在各种机械刺激下调节蛋白质合成和骨骼肌质量中的作用。","authors":"Craig A Goodman","doi":"10.1007/112_2013_17","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle plays a fundamental role in mobility, disease prevention, and quality of life. Skeletal muscle mass is, in part, determined by the rates of protein synthesis, and mechanical loading is a major regulator of protein synthesis and skeletal muscle mass. The mammalian/mechanistic target of rapamycin (mTOR), found in the multi-protein complex, mTORC1, is proposed to play an essential role in the regulation of protein synthesis and skeletal muscle mass. The purpose of this review is to examine the function of mTORC1 in relation to protein synthesis and cell growth, the current evidence from rodent and human studies for the activation of mTORC1 signaling by different types of mechanical stimuli, whether mTORC1 signaling is necessary for changes in protein synthesis and skeletal muscle mass that occur in response to different types of mechanical stimuli, and the proposed molecular signaling mechanisms that may be responsible for the mechanical activation of mTORC1 signaling. </p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":"166 ","pages":"43-95"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/112_2013_17","citationCount":"117","resultStr":"{\"title\":\"The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli.\",\"authors\":\"Craig A Goodman\",\"doi\":\"10.1007/112_2013_17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skeletal muscle plays a fundamental role in mobility, disease prevention, and quality of life. Skeletal muscle mass is, in part, determined by the rates of protein synthesis, and mechanical loading is a major regulator of protein synthesis and skeletal muscle mass. The mammalian/mechanistic target of rapamycin (mTOR), found in the multi-protein complex, mTORC1, is proposed to play an essential role in the regulation of protein synthesis and skeletal muscle mass. The purpose of this review is to examine the function of mTORC1 in relation to protein synthesis and cell growth, the current evidence from rodent and human studies for the activation of mTORC1 signaling by different types of mechanical stimuli, whether mTORC1 signaling is necessary for changes in protein synthesis and skeletal muscle mass that occur in response to different types of mechanical stimuli, and the proposed molecular signaling mechanisms that may be responsible for the mechanical activation of mTORC1 signaling. </p>\",\"PeriodicalId\":21169,\"journal\":{\"name\":\"Reviews of Physiology Biochemistry and Pharmacology\",\"volume\":\"166 \",\"pages\":\"43-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/112_2013_17\",\"citationCount\":\"117\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Physiology Biochemistry and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/112_2013_17\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Physiology Biochemistry and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/112_2013_17","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 117

摘要

骨骼肌在活动、疾病预防和生活质量方面起着重要作用。骨骼肌质量部分由蛋白质合成速率决定,而机械负荷是蛋白质合成和骨骼肌质量的主要调节因素。雷帕霉素(rapamycin, mTOR)的哺乳动物/机制靶点存在于多蛋白复合物mTORC1中,被认为在蛋白质合成和骨骼肌质量的调节中发挥重要作用。本综述的目的是研究mTORC1在蛋白质合成和细胞生长中的功能,目前来自啮齿动物和人类的mTORC1信号被不同类型的机械刺激激活的证据,mTORC1信号是否对不同类型的机械刺激引起的蛋白质合成和骨骼肌质量的变化是必要的。以及可能负责mTORC1信号的机械激活的分子信号机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli.

Skeletal muscle plays a fundamental role in mobility, disease prevention, and quality of life. Skeletal muscle mass is, in part, determined by the rates of protein synthesis, and mechanical loading is a major regulator of protein synthesis and skeletal muscle mass. The mammalian/mechanistic target of rapamycin (mTOR), found in the multi-protein complex, mTORC1, is proposed to play an essential role in the regulation of protein synthesis and skeletal muscle mass. The purpose of this review is to examine the function of mTORC1 in relation to protein synthesis and cell growth, the current evidence from rodent and human studies for the activation of mTORC1 signaling by different types of mechanical stimuli, whether mTORC1 signaling is necessary for changes in protein synthesis and skeletal muscle mass that occur in response to different types of mechanical stimuli, and the proposed molecular signaling mechanisms that may be responsible for the mechanical activation of mTORC1 signaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews of Physiology Biochemistry and Pharmacology
Reviews of Physiology Biochemistry and Pharmacology 医学-生化与分子生物学
CiteScore
11.40
自引率
0.00%
发文量
5
审稿时长
>12 weeks
期刊介绍: The highly successful Reviews of Physiology, Biochemistry and Pharmacology continue to offer high-quality, in-depth reviews covering the full range of modern physiology, biochemistry and pharmacology. Leading researchers are specially invited to provide a complete understanding of the key topics in these archetypal multidisciplinary fields. In a form immediately useful to scientists, this periodical aims to filter, highlight and review the latest developments in these rapidly advancing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信