Rizwan Ul Haq, Abdul Wahab, Khurshed Ayub, Khalid Mehmood, M Azhar Sherkheli, Rafeeq Alam Khan, Mohsin Raza
{"title":"天竺葵乙酸乙酯部位的止咳效果及安全性研究。","authors":"Rizwan Ul Haq, Abdul Wahab, Khurshed Ayub, Khalid Mehmood, M Azhar Sherkheli, Rafeeq Alam Khan, Mohsin Raza","doi":"10.1155/2013/256934","DOIUrl":null,"url":null,"abstract":"<p><p>Antitussive effects of ethyl acetate fraction of Terminalia chebula on sulphur dioxide (SO2) gas induced cough have been examined in mice. Safety profile of Terminalia chebula was established by determining LD50 and acute neurotoxicity. The result showed that extract of Terminalia chebula dose dependently suppressed SO2 gas induced cough in mice. Terminalia chebula, after i.p. administration at dose level 500 mg/kg, offered maximum cough suppressive effects; that is, number of coughs at 60 min was 12 ± 1.52 (mean ± SEM) as compared to codeine 10 mg/kg; i.p., dextromethorphan 10 mg/kg; i.p., and saline, having frequency of cough 10.375 ± 0.866, 12.428 ± 0.81, and 46 ± 2.61, respectively. LD50 value of Terminalia chebula was approximately 1265 mg/kg, respectively. No sign of neural impairment was observed at antitussive doses of extract. Antitussive effect of Terminalia chebula was partly reversed with treatment by naloxone (3 mg/kg; s.c.) while rimcazole (3 mg/kg; s.c.) did not antagonize its cough suppression activity. This may suggest that opioid receptors partially contribute in antitussive action of Terminalia chebula. Along with this, the possibility of presence of single or multiple mechanisms activated by several different pharmacological actions (mainly anti-inflammatory, antioxidant, spasmolytic, antibacterial, and antiphlegmatic) could not be eliminated. </p>","PeriodicalId":14662,"journal":{"name":"ISRN Pharmacology","volume":"2013 ","pages":"256934"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/256934","citationCount":"13","resultStr":"{\"title\":\"Antitussive Efficacy and Safety Profile of Ethyl Acetate Fraction of Terminalia chebula.\",\"authors\":\"Rizwan Ul Haq, Abdul Wahab, Khurshed Ayub, Khalid Mehmood, M Azhar Sherkheli, Rafeeq Alam Khan, Mohsin Raza\",\"doi\":\"10.1155/2013/256934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antitussive effects of ethyl acetate fraction of Terminalia chebula on sulphur dioxide (SO2) gas induced cough have been examined in mice. Safety profile of Terminalia chebula was established by determining LD50 and acute neurotoxicity. The result showed that extract of Terminalia chebula dose dependently suppressed SO2 gas induced cough in mice. Terminalia chebula, after i.p. administration at dose level 500 mg/kg, offered maximum cough suppressive effects; that is, number of coughs at 60 min was 12 ± 1.52 (mean ± SEM) as compared to codeine 10 mg/kg; i.p., dextromethorphan 10 mg/kg; i.p., and saline, having frequency of cough 10.375 ± 0.866, 12.428 ± 0.81, and 46 ± 2.61, respectively. LD50 value of Terminalia chebula was approximately 1265 mg/kg, respectively. No sign of neural impairment was observed at antitussive doses of extract. Antitussive effect of Terminalia chebula was partly reversed with treatment by naloxone (3 mg/kg; s.c.) while rimcazole (3 mg/kg; s.c.) did not antagonize its cough suppression activity. This may suggest that opioid receptors partially contribute in antitussive action of Terminalia chebula. Along with this, the possibility of presence of single or multiple mechanisms activated by several different pharmacological actions (mainly anti-inflammatory, antioxidant, spasmolytic, antibacterial, and antiphlegmatic) could not be eliminated. </p>\",\"PeriodicalId\":14662,\"journal\":{\"name\":\"ISRN Pharmacology\",\"volume\":\"2013 \",\"pages\":\"256934\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2013/256934\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISRN Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/256934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/256934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Antitussive Efficacy and Safety Profile of Ethyl Acetate Fraction of Terminalia chebula.
Antitussive effects of ethyl acetate fraction of Terminalia chebula on sulphur dioxide (SO2) gas induced cough have been examined in mice. Safety profile of Terminalia chebula was established by determining LD50 and acute neurotoxicity. The result showed that extract of Terminalia chebula dose dependently suppressed SO2 gas induced cough in mice. Terminalia chebula, after i.p. administration at dose level 500 mg/kg, offered maximum cough suppressive effects; that is, number of coughs at 60 min was 12 ± 1.52 (mean ± SEM) as compared to codeine 10 mg/kg; i.p., dextromethorphan 10 mg/kg; i.p., and saline, having frequency of cough 10.375 ± 0.866, 12.428 ± 0.81, and 46 ± 2.61, respectively. LD50 value of Terminalia chebula was approximately 1265 mg/kg, respectively. No sign of neural impairment was observed at antitussive doses of extract. Antitussive effect of Terminalia chebula was partly reversed with treatment by naloxone (3 mg/kg; s.c.) while rimcazole (3 mg/kg; s.c.) did not antagonize its cough suppression activity. This may suggest that opioid receptors partially contribute in antitussive action of Terminalia chebula. Along with this, the possibility of presence of single or multiple mechanisms activated by several different pharmacological actions (mainly anti-inflammatory, antioxidant, spasmolytic, antibacterial, and antiphlegmatic) could not be eliminated.