Zhigang Xue, Kevin Huang, Chaochao Cai, Lingbo Cai, Chun-yan Jiang, Yun Feng, Zhenshan Liu, Qiao Zeng, Liming Cheng, Yi E. Sun, Jia-yin Liu, Steve Horvath, Guoping Fan
{"title":"单细胞 RNA 测序揭示人类和小鼠早期胚胎的遗传程序","authors":"Zhigang Xue, Kevin Huang, Chaochao Cai, Lingbo Cai, Chun-yan Jiang, Yun Feng, Zhenshan Liu, Qiao Zeng, Liming Cheng, Yi E. Sun, Jia-yin Liu, Steve Horvath, Guoping Fan","doi":"10.1038/nature12364","DOIUrl":null,"url":null,"abstract":"Single-cell RNA sequencing and weighted gene co-expression network analysis are used to study transcriptome change in pre-implantation embryos and oocytes; this reveals a conserved genetic program between human and mouse but with different developmental specificity and timing, and conserved hub genes that may be key in pre-implantation development. This study of early embryonic development uses single-cell RNA sequencing and weighted gene co-expression network analysis (WGCNA) to obtain a detailed gene expression profile of human and mouse pre-implantation embryos and oocytes. The authors identify a small number of key functional modules that shape a sequential order of transcriptional changes in various pathways. They also found key hub genes that are conserved between human and mouse networks and argue that these genes may be key players in driving mammalian pre-implantation. Mammalian pre-implantation development is a complex process involving dramatic changes in the transcriptional architecture1,2,3,4. We report here a comprehensive analysis of transcriptome dynamics from oocyte to morula in both human and mouse embryos, using single-cell RNA sequencing. Based on single-nucleotide variants in human blastomere messenger RNAs and paternal-specific single-nucleotide polymorphisms, we identify novel stage-specific monoallelic expression patterns for a significant portion of polymorphic gene transcripts (25 to 53%). By weighted gene co-expression network analysis5,6, we find that each developmental stage can be delineated concisely by a small number of functional modules of co-expressed genes. This result indicates a sequential order of transcriptional changes in pathways of cell cycle, gene regulation, translation and metabolism, acting in a step-wise fashion from cleavage to morula. Cross-species comparisons with mouse pre-implantation embryos reveal that the majority of human stage-specific modules (7 out of 9) are notably preserved, but developmental specificity and timing differ between human and mouse. Furthermore, we identify conserved key members (or hub genes) of the human and mouse networks. These genes represent novel candidates that are likely to be key in driving mammalian pre-implantation development. Together, the results provide a valuable resource to dissect gene regulatory mechanisms underlying progressive development of early mammalian embryos.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"500 7464","pages":"593-597"},"PeriodicalIF":48.5000,"publicationDate":"2013-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/nature12364","citationCount":"801","resultStr":"{\"title\":\"Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing\",\"authors\":\"Zhigang Xue, Kevin Huang, Chaochao Cai, Lingbo Cai, Chun-yan Jiang, Yun Feng, Zhenshan Liu, Qiao Zeng, Liming Cheng, Yi E. Sun, Jia-yin Liu, Steve Horvath, Guoping Fan\",\"doi\":\"10.1038/nature12364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell RNA sequencing and weighted gene co-expression network analysis are used to study transcriptome change in pre-implantation embryos and oocytes; this reveals a conserved genetic program between human and mouse but with different developmental specificity and timing, and conserved hub genes that may be key in pre-implantation development. This study of early embryonic development uses single-cell RNA sequencing and weighted gene co-expression network analysis (WGCNA) to obtain a detailed gene expression profile of human and mouse pre-implantation embryos and oocytes. The authors identify a small number of key functional modules that shape a sequential order of transcriptional changes in various pathways. They also found key hub genes that are conserved between human and mouse networks and argue that these genes may be key players in driving mammalian pre-implantation. Mammalian pre-implantation development is a complex process involving dramatic changes in the transcriptional architecture1,2,3,4. We report here a comprehensive analysis of transcriptome dynamics from oocyte to morula in both human and mouse embryos, using single-cell RNA sequencing. Based on single-nucleotide variants in human blastomere messenger RNAs and paternal-specific single-nucleotide polymorphisms, we identify novel stage-specific monoallelic expression patterns for a significant portion of polymorphic gene transcripts (25 to 53%). By weighted gene co-expression network analysis5,6, we find that each developmental stage can be delineated concisely by a small number of functional modules of co-expressed genes. This result indicates a sequential order of transcriptional changes in pathways of cell cycle, gene regulation, translation and metabolism, acting in a step-wise fashion from cleavage to morula. Cross-species comparisons with mouse pre-implantation embryos reveal that the majority of human stage-specific modules (7 out of 9) are notably preserved, but developmental specificity and timing differ between human and mouse. Furthermore, we identify conserved key members (or hub genes) of the human and mouse networks. These genes represent novel candidates that are likely to be key in driving mammalian pre-implantation development. Together, the results provide a valuable resource to dissect gene regulatory mechanisms underlying progressive development of early mammalian embryos.\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"500 7464\",\"pages\":\"593-597\"},\"PeriodicalIF\":48.5000,\"publicationDate\":\"2013-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/nature12364\",\"citationCount\":\"801\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.nature.com/articles/nature12364\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/nature12364","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing
Single-cell RNA sequencing and weighted gene co-expression network analysis are used to study transcriptome change in pre-implantation embryos and oocytes; this reveals a conserved genetic program between human and mouse but with different developmental specificity and timing, and conserved hub genes that may be key in pre-implantation development. This study of early embryonic development uses single-cell RNA sequencing and weighted gene co-expression network analysis (WGCNA) to obtain a detailed gene expression profile of human and mouse pre-implantation embryos and oocytes. The authors identify a small number of key functional modules that shape a sequential order of transcriptional changes in various pathways. They also found key hub genes that are conserved between human and mouse networks and argue that these genes may be key players in driving mammalian pre-implantation. Mammalian pre-implantation development is a complex process involving dramatic changes in the transcriptional architecture1,2,3,4. We report here a comprehensive analysis of transcriptome dynamics from oocyte to morula in both human and mouse embryos, using single-cell RNA sequencing. Based on single-nucleotide variants in human blastomere messenger RNAs and paternal-specific single-nucleotide polymorphisms, we identify novel stage-specific monoallelic expression patterns for a significant portion of polymorphic gene transcripts (25 to 53%). By weighted gene co-expression network analysis5,6, we find that each developmental stage can be delineated concisely by a small number of functional modules of co-expressed genes. This result indicates a sequential order of transcriptional changes in pathways of cell cycle, gene regulation, translation and metabolism, acting in a step-wise fashion from cleavage to morula. Cross-species comparisons with mouse pre-implantation embryos reveal that the majority of human stage-specific modules (7 out of 9) are notably preserved, but developmental specificity and timing differ between human and mouse. Furthermore, we identify conserved key members (or hub genes) of the human and mouse networks. These genes represent novel candidates that are likely to be key in driving mammalian pre-implantation development. Together, the results provide a valuable resource to dissect gene regulatory mechanisms underlying progressive development of early mammalian embryos.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.