钙通道在重金属中毒中的作用。

ISRN Toxicology Pub Date : 2013-01-30 Print Date: 2013-01-01 DOI:10.1155/2013/184360
Carla Marchetti
{"title":"钙通道在重金属中毒中的作用。","authors":"Carla Marchetti","doi":"10.1155/2013/184360","DOIUrl":null,"url":null,"abstract":"<p><p>The role of voltage-dependent Ca channels (VDCC) in the membrane permeation of two toxic metals, lead (Pb) and cadmium (Cd), was studied in mammalian cells. Both metals interact with Ca-binding sites, but, while Cd influx appears to occur mainly through the same pathways as Ca, Pb is also rapidly taken up by different passive transport systems. Furthermore, I compared the effect of Cd in two Chinese hamster ovary (CHO) cell lines, a wild-type and a modified cell line, which were permanently transfected with an L-type VDCC. When cultures were subjected to a brief (30-60 min) exposure to 50-100  μ M Cd, apoptotic features, metal accumulation, and death were comparable in both cell lines although, in transfected cells, the effect of Cd treatment was partially prevented by nimodipine (VDCC antagonist) and enhanced by BayK8644 (VDCC agonist). Thus, expression of L-type Ca channels is not sufficient to modify Cd accumulation and sensitivity to a toxicological significant extent and while both Cd and Pb can take advantage of VDCC to permeate the membrane, these transport proteins are not the only, and frequently not the most important, pathways of permeation.</p>","PeriodicalId":14674,"journal":{"name":"ISRN Toxicology","volume":"2013 ","pages":"184360"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/184360","citationCount":"75","resultStr":"{\"title\":\"Role of calcium channels in heavy metal toxicity.\",\"authors\":\"Carla Marchetti\",\"doi\":\"10.1155/2013/184360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The role of voltage-dependent Ca channels (VDCC) in the membrane permeation of two toxic metals, lead (Pb) and cadmium (Cd), was studied in mammalian cells. Both metals interact with Ca-binding sites, but, while Cd influx appears to occur mainly through the same pathways as Ca, Pb is also rapidly taken up by different passive transport systems. Furthermore, I compared the effect of Cd in two Chinese hamster ovary (CHO) cell lines, a wild-type and a modified cell line, which were permanently transfected with an L-type VDCC. When cultures were subjected to a brief (30-60 min) exposure to 50-100  μ M Cd, apoptotic features, metal accumulation, and death were comparable in both cell lines although, in transfected cells, the effect of Cd treatment was partially prevented by nimodipine (VDCC antagonist) and enhanced by BayK8644 (VDCC agonist). Thus, expression of L-type Ca channels is not sufficient to modify Cd accumulation and sensitivity to a toxicological significant extent and while both Cd and Pb can take advantage of VDCC to permeate the membrane, these transport proteins are not the only, and frequently not the most important, pathways of permeation.</p>\",\"PeriodicalId\":14674,\"journal\":{\"name\":\"ISRN Toxicology\",\"volume\":\"2013 \",\"pages\":\"184360\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2013/184360\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISRN Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/184360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/1/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/184360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

在哺乳动物细胞中研究了电压依赖性钙离子通道(VDCC)在铅(Pb)和镉(Cd)两种有毒金属膜渗透中的作用。这两种金属都与钙结合位点相互作用,但是,虽然Cd内流似乎主要通过与Ca相同的途径发生,但Pb也被不同的被动运输系统迅速吸收。此外,我比较了Cd对永久转染l型VDCC的两种中国仓鼠卵巢(CHO)细胞系(野生型和修饰型)的影响。当培养物短暂暴露于50-100 μ M Cd(30-60分钟)时,两种细胞系的凋亡特征、金属积累和死亡相似,尽管在转染的细胞中,尼莫地平(VDCC拮抗剂)部分阻止了Cd处理的作用,而BayK8644 (VDCC激动剂)增强了Cd处理的作用。因此,l型Ca通道的表达不足以改变Cd的积累和毒性敏感性,虽然Cd和Pb都可以利用VDCC渗透膜,但这些转运蛋白并不是唯一的,而且往往不是最重要的渗透途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Role of calcium channels in heavy metal toxicity.

Role of calcium channels in heavy metal toxicity.

Role of calcium channels in heavy metal toxicity.

Role of calcium channels in heavy metal toxicity.

The role of voltage-dependent Ca channels (VDCC) in the membrane permeation of two toxic metals, lead (Pb) and cadmium (Cd), was studied in mammalian cells. Both metals interact with Ca-binding sites, but, while Cd influx appears to occur mainly through the same pathways as Ca, Pb is also rapidly taken up by different passive transport systems. Furthermore, I compared the effect of Cd in two Chinese hamster ovary (CHO) cell lines, a wild-type and a modified cell line, which were permanently transfected with an L-type VDCC. When cultures were subjected to a brief (30-60 min) exposure to 50-100  μ M Cd, apoptotic features, metal accumulation, and death were comparable in both cell lines although, in transfected cells, the effect of Cd treatment was partially prevented by nimodipine (VDCC antagonist) and enhanced by BayK8644 (VDCC agonist). Thus, expression of L-type Ca channels is not sufficient to modify Cd accumulation and sensitivity to a toxicological significant extent and while both Cd and Pb can take advantage of VDCC to permeate the membrane, these transport proteins are not the only, and frequently not the most important, pathways of permeation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信